Browse Source

cope binarytree to play with an rbtree implementation

release0.1.5
Georg Hopp 12 years ago
parent
commit
fafc5af2ab
  1. 297
      src/rbtree.c

297
src/rbtree.c

@ -0,0 +1,297 @@
#include <stdio.h>
#include <stdlib.h>
struct element
{
int data;
struct element * parent;
struct element * left;
struct element * right;
};
struct element *
newElement(int data)
{
struct element * el = malloc(sizeof(struct element));
el->data = data;
el->parent = NULL;
el->left = NULL;
el->right = NULL;
return el;
}
/**
* find element in tree
*/
struct element *
findElement(struct element * tree, int data)
{
while (NULL != tree) {
if (tree->data == data) {
break;
}
if (data < tree->data) {
tree = tree->left;
} else {
tree = tree->right;
}
}
return tree;
}
/**
* insert element in tree
*/
void
insertElement(struct element ** tree, int data)
{
struct element * node = *tree;
if (NULL == node) {
*tree = newElement(data);
return;
}
while (data != node->data) {
if (data < node->data) {
if (NULL == node->left) {
node->left = newElement(data);
node->left->parent = node;
return;
} else {
node = node->left;
}
} else {
if (NULL == node->right) {
node->right = newElement(data);
node->right->parent = node;
return;
} else {
node = node->right;
}
}
}
}
/**
* delete element from tree
* here multiple functions are involved....
* =======================================================================
*/
/**
* find minimum of the right subtree aka leftmost leaf of right subtree
* aka left in-order successor.
* We return the parent of the element in the out argument parent.
* This can be NULL wenn calling.
*/
struct element *
findInOrderSuccessor(struct element * tree)
{
struct element * node = tree->right;
while (NULL != node->left) {
node = node->left;
}
return node;
}
void
deleteElement(struct element ** tree, int data)
{
struct element * node = *tree;
// find the relevant node and it's parent
while (NULL != node && node->data != data) {
if (data < node->data) {
node = node->left;
} else {
node = node->right;
}
}
// element not found
if (NULL == node) {
return;
}
// distinuish 3 cases, where the resolving of each case leads to the
// precondition of the other.
// case 1: two children
if (NULL != node->left && NULL != node->right) {
struct element * successor = findInOrderSuccessor(node);
node->data = successor->data;
node = successor;
}
// case 2: one child wither left or right
if (NULL != node->left) {
//node->data = node->left->data;
//node = node->left;
if (NULL != node->parent) {
if (node == node->parent->left) {
node->parent->left = node->left;
} else {
node->parent->right = node->left;
}
}
node->left->parent = node->parent;
}
if (NULL != node->right) {
//node->data = node->right->data;
//node = node->right;
if (NULL != node->parent) {
if (node == node->parent->left) {
node->parent->left = node->right;
} else {
node->parent->right = node->right;
}
}
node->right->parent = node->parent;
}
// case 3: we are a leaf
if (NULL != node->parent) {
if (node == node->parent->left) {
node->parent->left = NULL;
} else {
node->parent->right = NULL;
}
}
if (node == *tree) {
if (NULL != node->left) {
*tree = node->left;
} else if (NULL != node->right) {
*tree = node->right;
} else {
*tree = NULL;
}
}
free(node);
}
void
traverse(struct element * tree, void (*cb)(int, int))
{
struct element * previous = tree;
struct element * node = tree;
int depth = 1;
// I think this has something like O(n+log(n)) on a ballanced
// tree because I have to traverse back the rightmost leaf to
// the root to get a break condition.
while (node) {
if (previous == node->right) {
previous = node;
node = node->parent;
depth--;
continue;
}
if ((NULL == node->left || previous == node->left)) {
cb(node->data, depth);
previous = node;
if (NULL != node->right) {
node = node->right;
depth++;
} else {
node = node->parent;
depth--;
}
} else {
previous = node;
node = node->left;
depth++;
}
}
}
void printElement(int data, int depth)
{
int i;
for (i=0; i<depth-1; i++) printf("-");
printf("%02d(%02d)\n", data, depth);
}
/**
* =======================================================================
*/
int
main(int argc, char * argv[])
{
int i;
struct element * root = NULL;
insertElement(&root, 13);
insertElement(&root, 8);
insertElement(&root, 16);
insertElement(&root, 11);
insertElement(&root, 3);
insertElement(&root, 9);
insertElement(&root, 12);
insertElement(&root, 10);
/*
* after this I have the following:
*
* Element 03: n=0x0xcf50d0 p=0x0xcf5040 l=0x(nil) r=0x(nil)
* Element 08: n=0x0xcf5040 p=0x0xcf5010 l=0x0xcf50d0 r=0x0xcf50a0
* Element 09: n=0x0xcf5100 p=0x0xcf50a0 l=0x(nil) r=0x0xcf5160
* Element 10: n=0x0xcf5160 p=0x0xcf5100 l=0x(nil) r=0x(nil)
* Element 11: n=0x0xcf50a0 p=0x0xcf5040 l=0x0xcf5100 r=0x0xcf5130
* Element 12: n=0x0xcf5130 p=0x0xcf50a0 l=0x(nil) r=0x(nil)
* Element 13: n=0x0xcf5010 p=0x(nil) l=0x0xcf5040 r=0x0xcf5070
* Element 16: n=0x0xcf5070 p=0x0xcf5010 l=0x(nil) r=0x(nil)
*
* which translates to:
*
* 03 has p:08, l:N , R:N
* 08 has p:13, l:03, r:11
* 09 has p:11, l:N , r:10
* 10 has p:09, l:N , r:N
* 11 has p:08, l:09, r:12
* 12 has p:11, l:N , r:N
* 13 has p:N , l:08, r:16
* 16 has p:13, l:N , r:N
*
* which visualizes as:
* 13
* 08 16
* 03 11 0 0
* 0 0 09 12
* 0 10 0 0
*
* Looks like the insert works properly.
* So the problem is out traversing...
*/
puts("elements:");
for (i=1; i<20; i++) {
struct element * element = findElement(root, i);
printf("Element %02d: n=0x%p p=0x%p l=0x%p r=0x%p\n",
i,
element,
element ? element->parent : 0x0,
element ? element->left : 0x0,
element ? element->right : 0x0);
}
puts("traverse");
traverse(root, printElement);
return 0;
}
// vim: set et ts=4 sw=4:
Loading…
Cancel
Save