Another abandoned server code base... this is kind of an ancestor of taskrambler.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

15829 lines
1.4 MiB

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="EN" xml:lang="EN">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes</title>
<style type="text/css" xml:space="preserve">
code { font-family: monospace; }
div.constraint,
div.issue,
div.note,
div.notice { margin-left: 2em; }
ol.enumar { list-style-type: decimal; }
ol.enumla { list-style-type: lower-alpha; }
ol.enumlr { list-style-type: lower-roman; }
ol.enumua { list-style-type: upper-alpha; }
ol.enumur { list-style-type: upper-roman; }
div.exampleInner pre { margin-left: 1em;
margin-top: 0em; margin-bottom: 0em}
div.exampleOuter {border: 4px double gray;
margin: 0em; padding: 0em}
div.exampleInner { background-color: #d5dee3;
border-top-width: 4px;
border-top-style: double;
border-top-color: #d3d3d3;
border-bottom-width: 4px;
border-bottom-style: double;
border-bottom-color: #d3d3d3;
padding: 4px; margin: 0em }
div.exampleWrapper { margin: 4px }
div.exampleHeader { font-weight: bold;
margin: 4px}
div.odiff-nsq-add { background-color: #DFDFDF; }
div.odiff-nsq-del { display: none; background-color: #FFDFDF }
div.idiff-nsq-del { display: none; text-decoration: line-through }
div.odiff-nsq-chg { background-color: #DFDFDF }
div.diff-nsq-off { }
span.odiff-nsq-add { background-color: #DFDFDF; }
span.diff-nsq-add { background-color: #DFDFDF; }
span.odiff-nsq-del { display: none; background-color: #FFDFDF }
span.idiff-nsq-del { display: none; text-decoration: line-through }
span.diff-nsq-del { display: none; background-color: #FFDFDF ; text-decoration: line-through }
span.odiff-nsq-chg { background-color: #DFDFDF }
span.diff-nsq-chg { background-color: #DFFFDF }
span.diff-nsq-off { }
td.odiff-nsq-add { background-color: #DFDFDF; }
td.odiff-nsq-del { display: none; background-color: #FFDFDF }
td.odiff-nsq-chg { background-color: #DFDFDF }
td.diff-nsq-off { }
table { width: 100%; }
img { color: white; border: none }
span.rfc2119 { font-variant: small-caps }
span.nav { float: right}
span.arrow { font-style: normal; font-weight: bold }
span.enumval { font-style: italic; font-weight: bold }
code { font-family: monospace; font-size: 100%}
span.propdef { font-weight: bold; font-family: monospace }
span.termdef {color: #850021}
div.termdef {color: #850021}
a.termref:visited, a.termref:link {font-family: sans-serif;
font-style: normal;
color: black;
text-decoration: none }
a.eltref:visited, a.eltref:link { font-family: sans-serif;
color: black;
text-decoration: none }
a.propref:visited, a.xpropref:visited, a.propref:link, a.xpropref:link { color: black; text-decoration: none;
font-family: sans-serif }
div.component {border: 2px solid black; margin-top: 1ex}
span.propdef { font-weight: bold; font-family: monospace }
div.ownDesc {margin-top: -2ex; margin-bottom: -2ex}
a.compref {font-family: sans-serif;
font-style: normal;
color: black;
text-decoration: none}
dl.props, dl.psvi {margin-bottom: .5em; margin-top: 0em}
div.toc1 {margin-left: 5ex}
div.toc2 {margin-left: 2ex}
div.tocLine{margin: 0em; text-indent: -6ex}
h3.withToc {margin-bottom: 0em}
div.constraintnote { margin-top: 1em }
div.constraint {
margin-left: 1em; }
div.constraintlist {
margin-left: 1em; margin-bottom: 0em
}
div.clnumber {
text-indent: -1em;
margin-top: 0em; margin-bottom: 0em }
div.schemaComp { border: 4px double gray;
margin: 0em 1em; padding: 0em }
div.scHead { border: 4px double gray;
border-bottom: 0px;
text-align: center;
margin-left: 1em; padding: .5em }
div.compHeader { margin: 4px;
font-weight: bold }
span.schemaComp { color: #A52A2A }
div.compBody {
border-top-width: 4px;
border-top-style: double;
border-top-color: #d3d3d3;
padding: 4px ; margin: 0em}
div.psviDef { border: 4px double gray;
margin: 1em 1em; padding: 0em }
div.psviHeader { margin: 4px;
font-weight: bold }
span.psviDef { color: #A52A2A }
div.psviBody { border-top-width: 4px;
border-top-style: double;
border-top-color: #d3d3d3;
padding: 4px ; margin: 0em}
div.reprdef { border: 4px double gray;
margin: 0em 1em; padding: 0em }
div.reprHeader { margin: 4px;
font-weight: bold }
span.reprdef { color: #A52A2A }
div.reprBody, div.reprcompmulti, div.reprdep {
border-top-width: 4px;
border-top-style: double;
border-top-color: #d3d3d3;
padding: 4px ; margin: 0em}
div.reprcomp {padding: 4px ; margin: 0em}
div.reprHead { text-align: center; }
div.mapSep { font-size: 50% ; clear: both}
div.mapProp {clear: left; float: left; width: 5em;
max-width: 12em; min-width: 5em }
div.mapRepr { margin-left: 6.5em }
p.element-syntax-1 { font-family: monospace;
margin-top: 0em; margin-bottom: .5em }
p.element-syntax { font-family: monospace;
border-top-width: 1px;
border-top-style: solid;
border-top-color: #d3d3d3;
padding: 4px ; margin: 0em}
div.exampleInner pre { margin-left: 1em;
margin-top: 0em; margin-bottom: 0em}
div.exampleOuter {border: 4px double gray;
margin: 0em;
margin-bottom: 0.6em;
padding: 0em}
div.exampleInner { background-color: #d5dee3;
border-top-width: 4px;
border-top-style: double;
border-top-color: #d3d3d3;
border-bottom-width: 4px;
border-bottom-style: double;
border-bottom-color: #d3d3d3;
padding: 4px; margin: 0em }
div.exampleWrapper { margin: 4px }
div.exampleHeader { font-weight: bold;
margin: 4px}
table.restricts { margin-top: 1em; margin-bottom: 1em; margin-left: -2em}
table.restricts th { margin-left: 0em }
table.ubc td, table.ubc th { font-size: smaller }
table.dtdemo th { text-align: center;
background-color: #d5dee3}
table.dtdemo pre { margin-left: 0em; margin-bottom: 0em}
table.dtdemo td {background-color: #bedce6}
table.scrap {margin: .5em; background-color: #f5dcb3}
table.defset {background-color: #ffeedd }
table.defset thead, table.diffed-defset thead { color: red; font-weight: bold }
img { color: white; border: none }
span.nav { float: right}
span.arrow { font-style: normal; font-weight: bold }
.shrink {font-size: 80% ; }
.defset ul { margin-top: 0 ;
margin-bottom: 0 ; }
div.defset { margin: 4px ;
border-width: 4px ;
border-style: double ;
border-color: gray ; }
div.aux { background-color: #eeeeee ;
color: #333333 ; }
div.defset-head { font-weight: bold ;
padding: 0.6em ;
border-bottom-width: 4px ;
border-bottom-style: double ;
border-color: #cfcfcf ; }
div.deftop {background-color: #d5dee3 ;
margin-top: 1.5em;
padding-bottom: 0.3em }
div.defindent { margin-left: 1em ;
margin-top: 0em ;
margin-bottom: 0em ; }
div.defargs { margin-left: 3em ; }
div.prod { margin: 1em ;
margin-left: 5em ; }
.lhs { margin-left: -4em ; }
table table, .defset table { margin: 0 ;
border: 0 ;
padding: 0 ; }
.note { margin-left: 2em ;
margin-top: 1em ;
margin-bottom: 1em ; }
div.issue { background-color: #d5bbbb}
.giLabel, .pdName { margin-bottom: 0 ; font-weight: bold }
.giDef, .pdDef { margin-left: 2.5em ; margin-top: 0}
div.pvlist { border: 4px double gray;
margin-bottom: .5em; margin-left: 1em; padding: .5em;
padding-right: 1em; padding-bottom: 1em }
div.pvVal div.pvlist {
border: 4px double gray;
margin-top: 1.2em;
margin-bottom: .5em;
/* margin-left: -5em; */
margin-left: -1.3em;
padding: .5em;
padding-right: 1em;
padding-bottom: 1em;
}
div.clnumber div.pvlist { border: 4px double gray;
margin-bottom: .5em; margin-left: 1em; padding-top: .5em;
text-indent: 0;
padding-right: 1em; padding-bottom: 1em }
div.mapRepr div.pvlist { border: 4px double gray; margin-top: .5em;
margin-bottom: .5em; padding: .5em;
padding-right: 1em; padding-bottom: 1em }
div.pvSep { font-size: 50% ; clear: both}
div.pvProp {clear: left; float: left; width: 7em;
max-width: 12em; min-width: 7em }
div.pvVal { margin-left: 8em }
div.pvpair {
clear: both;
padding: 0.3em;
padding-right: 0;
}
div.sfsScrap { border: 4px double gray;
margin: 0em 1em; padding: 0em }
div.sfsHead { margin: 4px;
font-weight: bold }
div.sfsBody {
border-top-width: 4px;
border-top-style: double;
border-top-color: #d3d3d3;
padding: 4px ; margin: 0em}
div.ednote {
display: block;
margin: 1.33em 0;
}
a.scrapref {
font-family: serif, sans-serif;
}
/* Added 2008-01-30. Value may be tweaked, but whatever it is,
* make it the same for these three different ways of saying
* 'paragraph'.
*/
p, div.p, div.block { margin: 1em 0; }
p.image-caption {
margin-left: 2em;
margin-right: 2em;
margin-bottom: 3em;
font-style: italic;
}
var {
/* color: green; */
color: navy; /* or perhaps try MediumBlue */
font-style: italic;
font-weight: bold;
}
table.blocknames,
table.blocknames td,
table.blocknames th {
border-style: solid;
border-width: thin;
empty-cells: show;
}
table.blocknames td,
table.blocknames th {
padding: 0.2em;
}
</style><link rel="stylesheet" type="text/css" href="http://www.w3.org/StyleSheets/TR/W3C-CR.css" /></head>
<body>
<div class="head"><p><a href="http://www.w3.org/" shape="rect"><img src="http://www.w3.org/Icons/w3c_home" alt="W3C" height="48" width="72" /></a></p>
<h1><a name="title" id="title" shape="rect"></a>W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes</h1>
<h2><a name="w3c-doctype" id="w3c-doctype" shape="rect"></a>W3C Candidate Recommendation 21 July 2011</h2><dl><dt>This version:</dt><dd>
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-2-20110721/" shape="rect">http://www.w3.org/TR/2011/CR-xmlschema11-2-20110721/</a>
</dd><dt>Latest version:</dt><dd><a href="http://www.w3.org/TR/xmlschema11-2/" shape="rect">http://www.w3.org/TR/xmlschema11-2/</a></dd><dt>Previous version:</dt><dd>
<a href="http://www.w3.org/TR/2009/WD-xmlschema11-2-20091203/" shape="rect">http://www.w3.org/TR/2009/WD-xmlschema11-2-20091203/</a>
</dd><dt>Editors (Version 1.1):</dt><dd>David Peterson, invited expert (SGML<em>Works!</em>) <a href="mailto:davep@iit.edu" shape="rect">&lt;davep@iit.edu&gt;</a></dd><dd>Shudi (Sandy) Gao &#39640;&#27530;&#38237;, IBM <a href="mailto:sandygao@ca.ibm.com" shape="rect">&lt;sandygao@ca.ibm.com&gt;</a></dd><dd>Ashok Malhotra, Oracle Corporation <a href="mailto:ashokmalhotra@alum.mit.edu" shape="rect">&lt;ashokmalhotra@alum.mit.edu&gt;</a></dd><dd>C. M. Sperberg-McQueen, Black Mesa Technologies LLC <a href="mailto:cmsmcq@blackmesatech.com" shape="rect">&lt;cmsmcq@blackmesatech.com&gt;</a></dd><dd>Henry S. Thompson, University of Edinburgh <a href="mailto:ht@inf.ed.ac.uk" shape="rect">&lt;ht@inf.ed.ac.uk&gt;</a></dd><dt>Editors (Version 1.0):</dt><dd>Paul V. Biron, Kaiser Permanente, for Health Level Seven <a href="mailto:paul@sparrow-hawk.org" shape="rect">&lt;paul@sparrow-hawk.org&gt;</a></dd><dd>Ashok Malhotra, Oracle Corporation <a href="mailto:ashokmalhotra@alum.mit.edu" shape="rect">&lt;ashokmalhotra@alum.mit.edu&gt;</a></dd></dl><p>This document is also available in these non-normative formats: <a href="http://www.w3.org/TR/2011/CR-xmlschema11-2-20110721/datatypes.xml" shape="rect">XML</a>, <a href="datatypes.diff-1.0.html" shape="rect">XHTML with changes since version 1.0 marked</a>, <a href="datatypes.diff-wd.html" shape="rect">XHTML with changes since previous Working Draft marked</a>, <a href="./XMLSchema.xsd" shape="rect">Independent copy of the schema for schema documents</a>, <a href="./XMLSchema.dtd" shape="rect">Independent copy of the DTD for schema documents</a>, and&#160;<a href="http://www.w3.org/2003/03/Translations/byTechnology?technology=xmlschema" shape="rect">List of translations</a>.</p><p class="copyright"><a href="http://www.w3.org/Consortium/Legal/ipr-notice#Copyright" shape="rect">Copyright</a>&#160;&#169;&#160;2011&#160;<a href="http://www.w3.org/" shape="rect"><acronym title="World Wide Web Consortium">W3C</acronym></a><sup>&#174;</sup> (<a href="http://www.csail.mit.edu/" shape="rect"><acronym title="Massachusetts Institute of Technology">MIT</acronym></a>, <a href="http://www.ercim.org/" shape="rect"><acronym title="European Research Consortium for Informatics and Mathematics">ERCIM</acronym></a>, <a href="http://www.keio.ac.jp/" shape="rect">Keio</a>), All Rights Reserved. W3C <a href="http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer" shape="rect">liability</a>, <a href="http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks" shape="rect">trademark</a> and <a href="http://www.w3.org/Consortium/Legal/copyright-documents" shape="rect">document use</a> rules apply.</p></div><hr /><div>
<h2><a name="abstract" id="abstract" shape="rect"></a>Abstract</h2><p>
<em>XML Schema: Datatypes</em> is part 2 of the specification of
the XML Schema language. It defines facilities for defining datatypes
to be used in XML Schemas as well as other XML specifications. The
datatype language, which is itself represented in XML, provides a superset of the
capabilities found in XML
document type definitions (DTDs) for specifying datatypes on elements
and attributes.
</p></div><div class="sotd">
<h2><a name="status" id="status" shape="rect"></a>Status of This Document</h2>
<p><em>This section describes the status of this document at the
time of its publication. Other documents may supersede this document.
A list of current W3C publications and the latest revision of this
technical report can be found in the
<a href="http://www.w3.org/TR/" shape="rect">W3C technical reports index</a> at
http://www.w3.org/TR/.</em></p><p>This
W3C Candidate Recommendation
specifies
the
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes.
It
is here made available for
review by W3C members and the
public. This version of this document was created on
21 July 2011.
</p><p id="p-changes-since-prev-wd">
Changes since the previous public Working Draft include the following:
</p><ul><li><div class="p">Enumerations, value constraints, and identity constraints
now use both identity and equality in checking to see
whether values match. This change resolves issue
<a href="http://www.w3.org/Bugs/Public/show_bug.cgi?id=9196" shape="rect">9196
Enumeration and NaN</a>.</div></li><li><div class="p">Some incompatibilities between the regular expression
grammars of XSD 1.0 and (earlier drafts of) XSD 1.1 have been removed,
and some corner cases in the handling of character classes
involving '<code>-</code>' have been clarified.
This change resolves issue
<a href="http://www.w3.org/Bugs/Public/show_bug.cgi?id=11125" shape="rect">11125
Regex grammar for 1.1 renders some 1.0 regexes invalid</a>.
</div></li><li><div class="p">The rules against unions with special datatypes as members,
and against lists with special datatypes as item type, have
been made clearer and more explicit. This resolves issue
<a href="http://www.w3.org/Bugs/Public/show_bug.cgi?id=11103" shape="rect">11103
Note in section 2.4.1 (Special datatypes as members of a union)</a>.
</div></li><li><div class="p">The normative reference to <a href="#UnicodeDB" shape="rect">[Unicode Database]</a> has
been changed to specify that processors are required to
support the version normatively referred to
<em>or any later version</em>; this makes it easier for
processors to support current versions of the Unicode
database instead of being tied to an out of date
version of that resource. At the same time, version-specific
information about the Unicode database has been moved
to a separate document, <a href="#unicode-escapes" shape="rect">[Unicode block names]</a>,
for more convenient maintenance.
</div><div class="p">These changes resolve issue
<a href="http://www.w3.org/Bugs/Public/show_bug.cgi?id=8732" shape="rect">8732
Unicode 5.2</a>.
</div></li><li><div class="p">
The <code>precisionDecimal</code> datatype has been removed
since there does not seem to be sufficient consensus in
the community for its retention.</div></li><li><div class="p">The description of character classes has been adjusted to make
clear that single-letter classes like C, L, or M are not in fact
defined by Unicode, and to warn that not all users of Unicode use
the same definition of C. </div></li><li><div class="p">Typographic errors in the regular expression describing the
lexical space of <a href="#duration" shape="rect">duration</a> have been corrected; this
resolves issue
<a href="http://www.w3.org/Bugs/Public/show_bug.cgi?id=12657" shape="rect">12657
Regex for durationLexicalRep in 3.3.7.2 Lexical Mapping</a>.
</div></li><li><div class="p">The lexical mapping for times of the form '<code>24:00:00</code>' (with
or without a trailing decimal point and zeroes) has been specified
explicitly.</div></li><li><div class="p">A number of small clarifications and corrections of typographic errors.</div></li></ul><p>For those primarily interested in the changes since version 1.0,
the <a href="#changes" shape="rect">Changes since version 1.0 (&#167;I)</a> appendix, which summarizes both changes
already made and also those in prospect, with links to the relevant
sections of this draft, is the recommended starting point.
An
accompanying version of this document displays in color all changes to
normative text since version 1.0; another shows changes since the
previous Working Draft.</p><p>The major changes since version 1.0 include:</p><ul><li><div class="p">Support for XML 1.1 has been added. It is now implementation
defined whether datatypes dependent on definitions in
<a href="#XML" shape="rect">[XML]</a> and <a href="#XMLNS" shape="rect">[Namespaces in XML]</a> use the definitions
as found in version 1.1 or version 1.0 of those specifications.
</div></li><li><div class="p">In order to align this specification with those being prepared by
the XSL and XML Query Working Groups, a new datatype named
<a href="#anyAtomicType" shape="rect">anyAtomicType</a> which
serves as the base type definition for all primitive atomic
datatypes has been introduced.</div></li><li><div class="p">The conceptual model of the date- and time-related types has been
defined more formally.</div></li><li><div class="p">A more formal treatment of the fundamental facets of the primitive
datatypes has been adopted.</div></li><li><div class="p">More formal definitions of the lexical space of most types have
been provided, with detailed descriptions of the mappings from lexical
representation to value and from value to <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div></li><li><div class="p">The validation rule
<a href="#cvc-datatype-valid" shape="rect">Datatype Valid (&#167;4.1.4)</a> has been recast in more declarative form.
A paraphrase of the constraint in procedural terms, which corrects
some errors in the previous versions of this document, has been added
as a note.</div></li><li><div class="p">The rules governing partial
implementations of infinite datatypes have been clarified.</div></li><li><div class="p">Various changes have been made in order to align the relevant
parts of this specification more closely with other relevant
specifications, including especially the corresponding
sections of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.</div></li></ul><p>Comments on this document should be made in
W3C's public installation of Bugzilla, specifying "XML Schema" as the
product. Instructions can be found at
<a href="http://www.w3.org/XML/2006/01/public-bugzilla" shape="rect">http://www.w3.org/XML/2006/01/public-bugzilla</a>. If access to
Bugzilla is not feasible, please send your comments to the W3C XML
Schema comments mailing list,
<a href="mailto:www-xml-schema-comments@w3.org" shape="rect">www-xml-schema-comments@w3.org</a>
(<a href="http://lists.w3.org/Archives/Public/www-xml-schema-comments/" shape="rect">archive</a>)
and note explicitly that
you have not made a Bugzilla entry for the comment.
Each Bugzilla entry and email message should contain only one
comment.</p><p>
The review period for this Candidate Recommendation document
extends until 21 August 2011.
</p><p>
Although feedback based on any
aspect of this specification is welcome, there are certain aspects of
the design presented herein for which the Working Group is
particularly interested in feedback. These are designated
'priority feedback' aspects of the design, and
identified as such in editorial notes at appropriate points in this
draft.
<em>Any
feature mentioned in a priority feedback note
is a "feature
at risk":</em>
the feature may be retained as is or
dropped, depending on the feedback received from readers,
schema authors, schema users, and implementors.
</p><p>Publication as a
Candidate Recommendation does not imply
endorsement by the W3C Membership. This is a draft document and may be
updated, replaced or obsoleted by other documents at any time. It is
inappropriate to cite this document as other than work in
progress.</p><div class="block">The <a href="http://www.w3.org/XML/Schema" shape="rect">W3C XML Schema Working Group</a> intends to
request advancement of this specification and publication as a
<a href="http://www.w3.org/2005/10/Process-20051014/tr#cfr" shape="rect">Proposed Recommendation</a>
(possibly with editorial
changes, and possibly removing features identified as being
at risk) as soon after 21 August 2011 as the following
conditions are met.<ul><li><div class="p">Each feature of the specification has been implemented successfully
by at least two independent implementations.</div></li><li><div class="p">The test suite which tests each feature of XSD new in XSD 1.1 has
been used to demonstrate the two implementations of each feature.
(The <a href="http://www.w3.org/XML/2004/xml-schema-test-suite/index.html" shape="rect">XML Schema Test Suite overview page</a> describes the current
state of the test suite and provides instructions for downloading
the test suite.)
</div></li><li><div class="p">The Working Group has responded formally to all issues raised
against this document during the Candidate Recommendation period.</div></li></ul>
At the time this
Candidate Recommendation
was published, no interoperability
or implementation report had yet been prepared.
</div><p>
This document has been produced by the <a href="http://www.w3.org/XML/Schema" shape="rect">W3C XML Schema Working Group</a>
as part of the W3C <a href="http://www.w3.org/XML/Activity" shape="rect">XML
Activity</a>. The goals of the XML Schema language version 1.1 are
discussed in the <a href="http://www.w3.org/TR/2003/WD-xmlschema-11-req-20030121/" shape="rect">Requirements
for XML Schema 1.1</a> document. The authors of this document are
the members of the XML Schema Working Group. Different parts of this
specification have different editors.
</p><p>This document was produced by
a group operating under the <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/" shape="rect">5 February
2004 W3C Patent Policy</a>. W3C maintains a
<a href="http://www.w3.org/2004/01/pp-impl/19482/status" shape="rect">public list of
any patent
disclosures</a> made in connection with
the deliverables of the group;
that page also includes instructions for disclosing a patent. An individual who
has actual knowledge of a patent which the individual believes
contains <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential" shape="rect">Essential Claim(s)</a> must
disclose the information in accordance with <a href="http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure" shape="rect">section
6 of the W3C Patent Policy</a>. </p><p>The English version of this specification is the only normative
version. Information about translations of this document is available
at <a href="http://www.w3.org/2003/03/Translations/byTechnology?technology=xmlschema" shape="rect">http://www.w3.org/2003/03/Translations/byTechnology?technology=xmlschema</a>.</p></div><div class="toc">
<h2><a name="contents" id="contents" shape="rect"></a>Table of Contents</h2><div class="toc">1 <a href="#Intro" shape="rect">Introduction</a><br clear="none" />
&#160;&#160;&#160;&#160;1.1 <a href="#intro1.1" shape="rect">Introduction to Version 1.1</a>
<br clear="none" />
&#160;&#160;&#160;&#160;1.2 <a href="#purpose" shape="rect">Purpose</a>
<br clear="none" />
&#160;&#160;&#160;&#160;1.3 <a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications</a>
<br clear="none" />
&#160;&#160;&#160;&#160;1.4 <a href="#requirements" shape="rect">Requirements</a>
<br clear="none" />
&#160;&#160;&#160;&#160;1.5 <a href="#scope" shape="rect">Scope</a>
<br clear="none" />
&#160;&#160;&#160;&#160;1.6 <a href="#terminology" shape="rect">Terminology</a>
<br clear="none" />
&#160;&#160;&#160;&#160;1.7 <a href="#constraints-and-contributions" shape="rect">Constraints and Contributions</a>
<br clear="none" />
2 <a href="#typesystem" shape="rect">Datatype System</a><br clear="none" />
&#160;&#160;&#160;&#160;2.1 <a href="#datatype" shape="rect">Datatype</a>
<br clear="none" />
&#160;&#160;&#160;&#160;2.2 <a href="#value-space" shape="rect">Value space</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#identity" shape="rect">Identity</a> &#183; <a href="#equality" shape="rect">Equality</a> &#183; <a href="#order" shape="rect">Order</a></div>
&#160;&#160;&#160;&#160;2.3 <a href="#lexical-space" shape="rect">The Lexical Space and Lexical Mapping</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#canonical-lexical-representation" shape="rect">Canonical Mapping</a></div>
&#160;&#160;&#160;&#160;2.4 <a href="#datatype-dichotomies" shape="rect">Datatype
Distinctions</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#atomic-vs-list" shape="rect">Atomic vs. List vs. Union Datatypes</a> &#183; <a href="#primitive-vs-derived" shape="rect">Special vs. Primitive vs.
Ordinary
Datatypes</a> &#183; <a href="#derivation" shape="rect">Definition, Derivation, Restriction, and Construction</a> &#183; <a href="#built-in-vs-user-derived" shape="rect">Built-in vs. User-Defined Datatypes</a></div>
3 <a href="#built-in-datatypes" shape="rect">Built-in Datatypes and Their Definitions</a><br clear="none" />
&#160;&#160;&#160;&#160;3.1 <a href="#namespaces" shape="rect">Namespace considerations</a>
<br clear="none" />
&#160;&#160;&#160;&#160;3.2 <a href="#special-datatypes" shape="rect">Special Built-in Datatypes</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#anySimpleType" shape="rect">anySimpleType</a> &#183; <a href="#anyAtomicType" shape="rect">anyAtomicType</a></div>
&#160;&#160;&#160;&#160;3.3 <a href="#built-in-primitive-datatypes" shape="rect">Primitive Datatypes</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#string" shape="rect">string</a> &#183; <a href="#boolean" shape="rect">boolean</a> &#183; <a href="#decimal" shape="rect">decimal</a> &#183; <a href="#float" shape="rect">float</a> &#183; <a href="#double" shape="rect">double</a> &#183; <a href="#duration" shape="rect">duration</a> &#183; <a href="#dateTime" shape="rect">dateTime</a> &#183; <a href="#time" shape="rect">time</a> &#183; <a href="#date" shape="rect">date</a> &#183; <a href="#gYearMonth" shape="rect">gYearMonth</a> &#183; <a href="#gYear" shape="rect">gYear</a> &#183; <a href="#gMonthDay" shape="rect">gMonthDay</a> &#183; <a href="#gDay" shape="rect">gDay</a> &#183; <a href="#gMonth" shape="rect">gMonth</a> &#183; <a href="#hexBinary" shape="rect">hexBinary</a> &#183; <a href="#base64Binary" shape="rect">base64Binary</a> &#183; <a href="#anyURI" shape="rect">anyURI</a> &#183; <a href="#QName" shape="rect">QName</a> &#183; <a href="#NOTATION" shape="rect">NOTATION</a></div>
&#160;&#160;&#160;&#160;3.4 <a href="#ordinary-built-ins" shape="rect">Other Built-in Datatypes</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#normalizedString" shape="rect">normalizedString</a> &#183; <a href="#token" shape="rect">token</a> &#183; <a href="#language" shape="rect">language</a> &#183; <a href="#NMTOKEN" shape="rect">NMTOKEN</a> &#183; <a href="#NMTOKENS" shape="rect">NMTOKENS</a> &#183; <a href="#Name" shape="rect">Name</a> &#183; <a href="#NCName" shape="rect">NCName</a> &#183; <a href="#ID" shape="rect">ID</a> &#183; <a href="#IDREF" shape="rect">IDREF</a> &#183; <a href="#IDREFS" shape="rect">IDREFS</a> &#183; <a href="#ENTITY" shape="rect">ENTITY</a> &#183; <a href="#ENTITIES" shape="rect">ENTITIES</a> &#183; <a href="#integer" shape="rect">integer</a> &#183; <a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a> &#183; <a href="#negativeInteger" shape="rect">negativeInteger</a> &#183; <a href="#long" shape="rect">long</a> &#183; <a href="#int" shape="rect">int</a> &#183; <a href="#short" shape="rect">short</a> &#183; <a href="#byte" shape="rect">byte</a> &#183; <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a> &#183; <a href="#unsignedLong" shape="rect">unsignedLong</a> &#183; <a href="#unsignedInt" shape="rect">unsignedInt</a> &#183; <a href="#unsignedShort" shape="rect">unsignedShort</a> &#183; <a href="#unsignedByte" shape="rect">unsignedByte</a> &#183; <a href="#positiveInteger" shape="rect">positiveInteger</a> &#183; <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> &#183; <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> &#183; <a href="#dateTimeStamp" shape="rect">dateTimeStamp</a></div>
4 <a href="#datatype-components" shape="rect">Datatype components</a><br clear="none" />
&#160;&#160;&#160;&#160;4.1 <a href="#rf-defn" shape="rect">Simple Type Definition</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#dc-defn" shape="rect">The Simple Type Definition Schema Component</a> &#183; <a href="#xr-defn" shape="rect">XML Representation of Simple Type Definition Schema Components</a> &#183; <a href="#defn-rep-constr" shape="rect">Constraints on XML Representation of Simple Type Definition</a> &#183; <a href="#defn-validation-rules" shape="rect">Simple Type Definition Validation Rules</a> &#183; <a href="#defn-coss" shape="rect">Constraints on Simple Type Definition Schema Components</a> &#183; <a href="#builtin-stds" shape="rect">Built-in Simple Type Definitions</a></div>
&#160;&#160;&#160;&#160;4.2 <a href="#rf-fund-facets" shape="rect">Fundamental Facets</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#rf-ordered" shape="rect">ordered</a> &#183; <a href="#rf-bounded" shape="rect">bounded</a> &#183; <a href="#rf-cardinality" shape="rect">cardinality</a> &#183; <a href="#rf-numeric" shape="rect">numeric</a></div>
&#160;&#160;&#160;&#160;4.3 <a href="#rf-facets" shape="rect">Constraining Facets</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#rf-length" shape="rect">length</a> &#183; <a href="#rf-minLength" shape="rect">minLength</a> &#183; <a href="#rf-maxLength" shape="rect">maxLength</a> &#183; <a href="#rf-pattern" shape="rect">pattern</a> &#183; <a href="#rf-enumeration" shape="rect">enumeration</a> &#183; <a href="#rf-whiteSpace" shape="rect">whiteSpace</a> &#183; <a href="#rf-maxInclusive" shape="rect">maxInclusive</a> &#183; <a href="#rf-maxExclusive" shape="rect">maxExclusive</a> &#183; <a href="#rf-minExclusive" shape="rect">minExclusive</a> &#183; <a href="#rf-minInclusive" shape="rect">minInclusive</a> &#183; <a href="#rf-totalDigits" shape="rect">totalDigits</a> &#183; <a href="#rf-fractionDigits" shape="rect">fractionDigits</a> &#183; <a href="#rf-assertions" shape="rect">Assertions</a> &#183; <a href="#rf-explicitTimezone" shape="rect">explicitTimezone</a></div>
5 <a href="#conformance" shape="rect">Conformance</a><br clear="none" />
&#160;&#160;&#160;&#160;5.1 <a href="#hostlangs" shape="rect">Host Languages</a>
<br clear="none" />
&#160;&#160;&#160;&#160;5.2 <a href="#independent-impl" shape="rect">Independent implementations</a>
<br clear="none" />
&#160;&#160;&#160;&#160;5.3 <a href="#data-conformance" shape="rect">Conformance of data</a>
<br clear="none" />
&#160;&#160;&#160;&#160;5.4 <a href="#partial-implementation" shape="rect">Partial Implementation of Infinite Datatypes</a>
<br clear="none" />
</div>
<h3><a name="appendices" id="appendices" shape="rect"></a>Appendices</h3>
<div class="toc">A <a href="#schema" shape="rect">Schema for Schema Documents (Datatypes)
(normative)</a><br clear="none" />
B <a href="#dtd-for-datatypeDefs" shape="rect">DTD for Datatype Definitions (non-normative)</a><br clear="none" />
C <a href="#prim.nxsd" shape="rect">Illustrative XML representations for the built-in simple type definitions</a><br clear="none" />
&#160;&#160;&#160;&#160;C.1 <a href="#sec-prim-nxsd" shape="rect">Illustrative XML representations for the built-in primitive type definitions</a>
<br clear="none" />
&#160;&#160;&#160;&#160;C.2 <a href="#drvd.nxsd" shape="rect">Illustrative XML representations for the built-in ordinary type definitions</a>
<br clear="none" />
D <a href="#constructedValueSpaces" shape="rect">Built-up Value Spaces</a><br clear="none" />
&#160;&#160;&#160;&#160;D.1 <a href="#sec-numericalValues" shape="rect">Numerical Values</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#sec-exactmaps" shape="rect">Exact Lexical Mappings</a></div>
&#160;&#160;&#160;&#160;D.2 <a href="#d-t-values" shape="rect">Date/time Values</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#theSevenPropertyModel" shape="rect">The Seven-property Model</a> &#183; <a href="#rf-lexicalMappings-datetime" shape="rect">Lexical Mappings</a></div>
E <a href="#ap-funcDefs" shape="rect">Function
Definitions</a><br clear="none" />
&#160;&#160;&#160;&#160;E.1 <a href="#sec-generic-number-functions" shape="rect">Generic Number-related Functions</a>
<br clear="none" />
&#160;&#160;&#160;&#160;E.2 <a href="#sec-duration-functions" shape="rect">Duration-related Definitions</a>
<br clear="none" />
&#160;&#160;&#160;&#160;E.3 <a href="#sec-dt-functions" shape="rect">Date/time-related Definitions</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#sec-normalization" shape="rect">Normalization of property values</a> &#183; <a href="#sec-aux-functions" shape="rect">Auxiliary Functions</a> &#183; <a href="#sec-dt-arith" shape="rect">Adding durations to dateTimes</a> &#183; <a href="#sec-timeontimeline" shape="rect">Time on timeline</a> &#183; <a href="#sec-dt-lexmaps" shape="rect">Lexical mappings</a> &#183; <a href="#sec-dt-canmaps" shape="rect">Canonical Mappings</a></div>
&#160;&#160;&#160;&#160;E.4 <a href="#sec-misc-lexmaps" shape="rect">Lexical and Canonical Mappings for Other Datatypes</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#sec-hexbin-lexmaps" shape="rect">Lexical and canonical mappings for </a></div>
F <a href="#sec-datatypes-and-facets" shape="rect">Datatypes and Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;F.1 <a href="#app-fundamental-facets" shape="rect">Fundamental Facets</a>
<br clear="none" />
G <a href="#regexs" shape="rect">Regular Expressions</a><br clear="none" />
&#160;&#160;&#160;&#160;G.1 <a href="#regex-branch" shape="rect">Regular expressions and branches</a>
<br clear="none" />
&#160;&#160;&#160;&#160;G.2 <a href="#regex-piece" shape="rect">Pieces, atoms, quantifiers</a>
<br clear="none" />
&#160;&#160;&#160;&#160;G.3 <a href="#regex-char-metachar" shape="rect">Characters and metacharacters</a>
<br clear="none" />
&#160;&#160;&#160;&#160;G.4 <a href="#charcter-classes" shape="rect">Character Classes</a>
<div style="margin-left: 4em; margin-top: 0; margin-bottom: 0;">
<a href="#charclassexps" shape="rect">Character class expressions</a> &#183; <a href="#cces" shape="rect">Character Class Escapes</a></div>
H <a href="#idef-idep" shape="rect">Implementation-defined and implementation-dependent features (normative)</a><br clear="none" />
&#160;&#160;&#160;&#160;H.1 <a href="#impl-def" shape="rect">Implementation-defined features</a>
<br clear="none" />
&#160;&#160;&#160;&#160;H.2 <a href="#impl-dep" shape="rect">Implementation-dependent features</a>
<br clear="none" />
I <a href="#changes" shape="rect">Changes since version 1.0</a><br clear="none" />
&#160;&#160;&#160;&#160;I.1 <a href="#sec-chdtfacets" shape="rect">Datatypes and Facets</a>
<br clear="none" />
&#160;&#160;&#160;&#160;I.2 <a href="#sec-chnum" shape="rect">Numerical Datatypes</a>
<br clear="none" />
&#160;&#160;&#160;&#160;I.3 <a href="#sec-chdt" shape="rect">Date/time Datatypes</a>
<br clear="none" />
&#160;&#160;&#160;&#160;I.4 <a href="#sec-chother" shape="rect">Other changes</a>
<br clear="none" />
J <a href="#normative-glossary" shape="rect">Glossary (non-normative)</a><br clear="none" />
K <a href="#biblio" shape="rect">References</a><br clear="none" />
&#160;&#160;&#160;&#160;K.1 <a href="#normative-biblio" shape="rect">Normative</a>
<br clear="none" />
&#160;&#160;&#160;&#160;K.2 <a href="#non-normative-biblio" shape="rect">Non-normative</a>
<br clear="none" />
L <a href="#acknowledgments" shape="rect">Acknowledgements (non-normative)</a><br clear="none" />
</div>
</div><hr /><div class="body"><div class="div1">
<h2><a name="Intro" id="Intro" shape="rect"></a>1 Introduction</h2><div class="div2">
<h3><span class="nav"> <a href="#purpose" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="intro1.1" id="intro1.1" shape="rect"></a>1.1 Introduction to Version 1.1</h3><p>The Working Group has two main goals for this version of W3C XML
Schema:</p><ul><li><div class="p">Significant improvements in simplicity of design and clarity
of exposition <em>without</em> loss of backward <em>or</em>
forward compatibility;
</div></li><li><div class="p">Provision of support for versioning of XML languages defined
using the XML Schema specification, including the XML transfer syntax
for schemas itself.</div></li></ul><p>These goals are slightly in tension with one another -- the
following summarizes the Working Group's strategic guidelines for
changes between versions 1.0 and 1.1:</p><ol class="enumar"><li><div class="p">Add support for versioning (acknowledging that this
<em>may</em> be slightly disruptive to the XML transfer syntax at
the margins)</div></li><li><div class="p">Allow bug fixes (unless in specific cases we decide that the
fix is too disruptive for a point release)</div></li><li><div class="p">Allow editorial changes</div></li><li><div class="p">Allow design cleanup to change behavior in edge
cases</div></li><li><div class="p">Allow relatively non-disruptive changes to type hierarchy (to
better support current and forthcoming international standards and W3C
recommendations)</div></li><li><div class="p">Allow design cleanup to change component structure (changes
to functionality restricted to edge cases)</div></li><li><div class="p">Do not allow any significant changes in functionality</div></li><li><div class="p">Do not allow any changes to XML transfer syntax except those
required by version control hooks and bug fixes</div></li></ol><p>The overall aim as regards compatibility is that</p><ul><li><div class="p">All schema documents conformant to version 1.0 of this
specification should also conform to version 1.1, and should have the
same validation behavior across 1.0 and 1.1 implementations (except
possibly in edge cases and in the details of the resulting
PSVI);</div></li><li><div class="p">The vast majority of schema documents conformant to version
1.1 of this specification should also conform to version 1.0, leaving
aside any incompatibilities arising from support for versioning, and
when they are conformant to version 1.0 (or are made conformant by the
removal of versioning information), should have the same validation
behavior across 1.0 and 1.1 implementations (again except possibly in
edge cases and in the details of the resulting PSVI);
</div></li></ul></div><div class="div2">
<h3><span class="nav"><a href="#intro1.1" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#intro-relatedWork" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="purpose" id="purpose" shape="rect"></a>1.2 Purpose</h3><p>
The <a href="#XML" shape="rect">[XML]</a> specification defines limited
facilities for applying datatypes to document content in that documents
may contain or refer to DTDs that assign types to elements and attributes.
However, document authors, including authors of traditional
<em>documents</em> and those transporting <em>data</em> in XML,
often require a higher degree of type checking to ensure robustness in
document understanding and data interchange.
</p><p>
The table below offers two typical examples of XML instances
in which datatypes are implicit: the instance on the left
represents a billing invoice, the instance on the
right a memo or perhaps an email message in XML.
</p><table class="dtdemo" border="1"><thead><tr><th rowspan="1" colspan="1">Data oriented</th><th rowspan="1" colspan="1">Document oriented</th></tr></thead><tbody><tr><td rowspan="1" colspan="1">
<pre xml:space="preserve">&lt;invoice&gt;
&lt;orderDate&gt;1999-01-21&lt;/orderDate&gt;
&lt;shipDate&gt;1999-01-25&lt;/shipDate&gt;
&lt;billingAddress&gt;
&lt;name&gt;Ashok Malhotra&lt;/name&gt;
&lt;street&gt;123 Microsoft Ave.&lt;/street&gt;
&lt;city&gt;Hawthorne&lt;/city&gt;
&lt;state&gt;NY&lt;/state&gt;
&lt;zip&gt;10532-0000&lt;/zip&gt;
&lt;/billingAddress&gt;
&lt;voice&gt;555-1234&lt;/voice&gt;
&lt;fax&gt;555-4321&lt;/fax&gt;
&lt;/invoice&gt;</pre>
</td><td rowspan="1" colspan="1">
<pre xml:space="preserve">&lt;memo importance='high'
date='1999-03-23'&gt;
&lt;from&gt;Paul V. Biron&lt;/from&gt;
&lt;to&gt;Ashok Malhotra&lt;/to&gt;
&lt;subject&gt;Latest draft&lt;/subject&gt;
&lt;body&gt;
We need to discuss the latest
draft &lt;emph&gt;immediately&lt;/emph&gt;.
Either email me at &lt;email&gt;
mailto:paul.v.biron@kp.org&lt;/email&gt;
or call &lt;phone&gt;555-9876&lt;/phone&gt;
&lt;/body&gt;
&lt;/memo&gt;</pre>
</td></tr></tbody></table><p>
The invoice contains several dates and telephone numbers, the postal
abbreviation for a state (which comes from an enumerated list of
sanctioned values), and a ZIP code (which takes a definable regular
form).&#160; The memo contains many of the same types of information:
a date, telephone number, email address and an "importance" value
(from an enumerated list, such as "low", "medium" or "high").&#160;
Applications which process invoices and memos need to raise exceptions
if something that was supposed to be a date or telephone number does
not conform to the rules for valid dates or telephone numbers.
</p><p>
In both cases, validity constraints exist on the content of the
instances that are not expressible in XML DTDs.&#160; The limited
datatyping facilities in XML have prevented validating XML processors
from supplying the rigorous type checking required in these
situations.&#160; The result has been that individual applications
writers have had to implement type checking in an ad hoc manner.&#160;
This specification addresses the need of both document authors and
applications writers for a robust, extensible datatype system for XML
which could be incorporated into XML processors.&#160; As discussed
below, these datatypes could be used in other XML-related standards as
well.
</p></div><div class="div2">
<h3><span class="nav"><a href="#purpose" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#requirements" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="intro-relatedWork" id="intro-relatedWork" shape="rect"></a>1.3 Dependencies on Other Specifications</h3><p>Other specifications on which this one depends
are listed in <a href="#biblio" shape="rect">References (&#167;K)</a>.</p><p>This specification defines some datatypes which depend on
definitions in <a href="#XML" shape="rect">[XML]</a> and <a href="#XMLNS" shape="rect">[Namespaces in XML]</a>; those
definitions, and therefore the datatypes based on them, vary between
version 1.0 (<a href="#XML1.0" shape="rect">[XML 1.0]</a>,
<a href="#XMLNS1.0" shape="rect">[Namespaces in XML 1.0]</a>) and version 1.1 (<a href="#XML" shape="rect">[XML]</a>,
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>) of those specifications. In any given use
of this specification, the choice of the 1.0 or the 1.1 definition of
those datatypes is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a>.
</p><p>
Conforming implementations of this specification
may provide either
the 1.1-based datatypes or the 1.0-based datatypes, or both. If both
are supported, the choice of which datatypes to use in a particular
assessment episode <span class="rfc2119">should</span> be under user control.
</p><div class="note"><div class="p"><b>Note:</b>
When this specification is used to check the datatype validity of XML
input, implementations <span class="rfc2119">may</span> provide the heuristic of using the 1.1
datatypes if the input is labeled as XML 1.1, and using the 1.0 datatypes if
the input is labeled 1.0, but this heuristic <span class="rfc2119">should</span> be subject to
override by users, to support cases where users wish to accept XML 1.1
input but validate it using the 1.0 datatypes, or accept XML 1.0 input
and validate it using the 1.1 datatypes.
</div></div><p id="loc5321">This specification
makes use of the EBNF notation used in the
<a href="#XML" shape="rect">[XML]</a> specification.&#160;Note
that some constructs of the EBNF notation used here
resemble the regular-expression syntax defined in this specification
(<a href="#regexs" shape="rect">Regular Expressions (&#167;G)</a>), but that they are not
identical: there are differences.
For a fuller description of the EBNF notation, see
<a href="http://www.w3.org/TR/xml11/#sec-notation" shape="rect">Section
6.&#160;Notation</a> of the <a href="#XML" shape="rect">[XML]</a> specification.</p></div><div class="div2">
<h3><span class="nav"><a href="#intro-relatedWork" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#scope" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="requirements" id="requirements" shape="rect"></a>1.4 Requirements</h3><p>
The <a href="#schema-requirements" shape="rect">[XML Schema Requirements]</a> document spells out
concrete requirements to be fulfilled by this specification,
which state that the XML Schema Language must:
</p><ol class="enumar"><li><div class="p">
provide for primitive data typing, including byte, date,
integer, sequence, SQL and Java primitive datatypes, etc.;
</div></li><li><div class="p">
define a type system that is adequate for import/export
from database systems (e.g., relational, object, OLAP);
</div></li><li><div class="p">
distinguish requirements relating to lexical data representation
vs.
those governing an underlying information set;
</div></li><li><div class="p">
allow creation of user-defined datatypes, such as
datatypes that are derived from existing datatypes and which
may constrain certain of its properties (e.g., range,
precision, length, format).
</div></li></ol></div><div class="div2">
<h3><span class="nav"><a href="#requirements" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#terminology" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="scope" id="scope" shape="rect"></a>1.5 Scope</h3><p>
This specification
defines datatypes that can be used in an XML Schema.&#160;
These datatypes can be specified for element content that would be
specified as <a href="http://www.w3.org/TR/xml11/#dt-chardata" shape="rect">#PCDATA</a>
and attribute values of <a href="http://www.w3.org/TR/xml11/#sec-attribute-types" shape="rect">various types </a> in a
DTD.&#160; It is the intention of this specification that it be usable
outside of the context of XML Schemas for a wide range of other
XML-related activities such as <a href="#XSL" shape="rect">[XSL]</a> and
<a href="#RDFSchema" shape="rect">[RDF Schema]</a>.
</p></div><div class="div2">
<h3><span class="nav"><a href="#scope" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#constraints-and-contributions" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="terminology" id="terminology" shape="rect"></a>1.6 Terminology</h3><p>
The terminology used to describe XML Schema Datatypes is defined in
the body of this specification. The terms defined in the following
list are used in building those definitions and in describing the
actions of a datatype processor:
</p><div class="glist"><div class="gitem"><div class="giLabel">
<span class="termdef"><a name="dt-compatibility" id="dt-compatibility" title="" shape="rect">[Definition:]&#160;&#160;</a>for compatibility</span>
</div><div class="giDef"><div class="p">
A feature of this specification included solely to ensure that
schemas which use this feature remain compatible with <a href="#XML" shape="rect">[XML]</a>.
</div></div></div><div class="gitem"><div class="giLabel">
<span class="termdef"><a name="dt-match" id="dt-match" title="" shape="rect">[Definition:]&#160;&#160;</a><b>match</b></span>
</div><div class="giDef"><div class="p">
<em>(Of strings or names:)</em>
Two strings or names being compared must be
identical. Characters with multiple possible representations in
ISO/IEC 10646 (e.g. characters with both precomposed and
base+diacritic forms) match only if they have the same representation
in both strings. No case folding is performed.
</div><div class="p"><em>(Of strings and rules
in the grammar:)</em>
A string matches a grammatical production
if and only if it belongs to the language
generated by that production.
</div></div></div><div class="gitem"><div class="giLabel">
<span class="termdef"><a name="dt-may" id="dt-may" title="" shape="rect">[Definition:]&#160;&#160;</a><span class="rfc2119">may</span></span>
</div><div class="giDef"><div class="p">
Schemas,
schema documents, and processors
are permitted to but need
not behave as described.
</div></div></div><div class="gitem"><div class="giLabel"><span class="termdef"><a name="dt-should" id="dt-should" title="" shape="rect">[Definition:]&#160;&#160;</a><span class="rfc2119">should</span></span></div><div class="giDef"><div class="p">It is recommended that schemas, schema documents, and
processors behave as described, but there
can be valid reasons for them not to; it is important that the
full implications be understood and carefully weighed before
adopting behavior at variance with the recommendation.</div></div></div><div class="gitem"><div class="giLabel">
<span class="termdef"><a name="dt-must" id="dt-must" title="" shape="rect">[Definition:]&#160;&#160;</a><span class="rfc2119">must</span></span>
</div><div class="giDef"><div class="p">
<em>(Of schemas and
schema documents:)</em>
Schemas and documents
are required to behave as described; otherwise they are in <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a>.
</div><div class="p"><em>(Of processors:)</em>
Processors are required to behave as described.
</div></div></div><div class="gitem"><div class="giLabel"><span class="termdef"><a name="dt-mustnot" id="dt-mustnot" title="" shape="rect">[Definition:]&#160;&#160;</a><span class="rfc2119">must not</span></span></div><div class="giDef"><div class="p">Schemas, schema documents
and processors are forbidden to behave as
described; schemas and documents which nevertheless
do so are in <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a>.</div></div></div><div class="gitem"><div class="giLabel">
<span class="termdef"><a name="dt-error" id="dt-error" title="" shape="rect">[Definition:]&#160;&#160;</a><b>error</b></span>
</div><div class="giDef"><div class="p">A failure of a
schema or schema
document
to conform to the rules of this specification.</div><div class="p">
Except as otherwise specified,
processors <span class="rfc2119">must</span> distinguish
error-free (conforming) schemas and schema documents
from those with errors;
if a schema
used in type-validation or a schema document
used in constructing a schema
is in error, processors <span class="rfc2119">must</span>
report the fact;
if more than one is in error, it is <a href="#key-impl-dep" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-dependent<span class="arrow">&#183;</span></a>
whether more than one is reported as being in error.
If more than one of the constraints given in
this specification is violated, it
is <a href="#key-impl-dep" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-dependent<span class="arrow">&#183;</span></a> how many of the violations, and which, are
reported.
</div><div class="note"><div class="p"><b>Note:</b> Failure of an XML element or attribute to be
datatype-valid against a particular
datatype in a particular schema is not in itself a failure
to conform to this specification and thus,
for purposes of this specification, not an error.
</div></div></div></div><div class="gitem"><div class="giLabel">
<span class="termdef"><a name="dt-useroption" id="dt-useroption" title="" shape="rect">[Definition:]&#160;&#160;</a><b>user option</b></span>
</div><div class="giDef"><div class="p">A choice left under the control of the user of a processor,
rather than being fixed for all users or uses of the processor.
</div><div class="p">Statements in this specification that "Processors
<span class="rfc2119">may</span> at user option" behave in a certain way mean that
processors <span class="rfc2119">may</span> provide mechanisms to allow users
(i.e. invokers of the processor) to enable or disable the
behavior indicated. Processors which do not provide such
user-operable controls <span class="rfc2119">must not</span> behave in the way indicated.
Processors which do provide such
user-operable controls <span class="rfc2119">must</span> make it possible for the user
to disable the optional behavior.
</div><div class="note"><div class="p"><b>Note:</b> The normal expectation is that the default setting for
such options will be to disable the
optional
behavior in question,
enabling it only when the user explicitly requests it. This
is not, however, a requirement of conformance: if the
processor's documentation makes clear that the user can
disable the optional
behavior, then invoking the processor without
requesting that it be disabled can be taken as equivalent to
a request that it be enabled.
It is required,
however, that it in fact be possible for the user to disable the
optional behavior.
</div></div><div class="note"><div class="p"><b>Note:</b> Nothing in this specification constrains the manner
in which processors allow users to control user options.
Command-line options, menu choices in a graphical user
interface, environment variables, alternative call patterns
in an application programming interface, and other
mechanisms may all be taken as providing user options.
</div></div></div></div></div></div><div class="div2">
<h3><span class="nav"><a href="#terminology" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="constraints-and-contributions" id="constraints-and-contributions" shape="rect"></a>1.7 Constraints and Contributions</h3><p>
This specification provides three different kinds of normative
statements about schema components, their representations in XML and
their contribution to the schema-validation of information items:
</p><div class="glist"><div class="gitem"><div class="giLabel">
<span class="termdef"><a name="dt-cos" id="dt-cos" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>Constraint on Schemas</b>
</span>
</div><div class="giDef"><div class="p">
Constraints on the schema components themselves, i.e. conditions
components <a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> satisfy to be components at all.
Largely to be found in <a href="#datatype-components" shape="rect">Datatype components (&#167;4)</a>.
</div></div></div><div class="gitem"><div class="giLabel">
<span class="termdef"><a name="dt-src" id="dt-src" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>Schema Representation Constraint</b>
</span>
</div><div class="giDef"><div class="p">
Constraints on the representation of schema components in XML.&#160;
Some but not all of these are expressed in <a href="#schema" shape="rect">Schema for Schema Documents (Datatypes)
(normative) (&#167;A)</a> and
<a href="#dtd-for-datatypeDefs" shape="rect">DTD for Datatype Definitions (non-normative) (&#167;B)</a>.
</div></div></div><div class="gitem"><div class="giLabel">
<span class="termdef"><a name="dt-cvc" id="dt-cvc" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>Validation Rule</b>
</span>
</div><div class="giDef"><div class="p">
Constraints expressed by schema components which information items
<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> satisfy to be schema-valid.&#160; Largely to
be found in <a href="#datatype-components" shape="rect">Datatype components (&#167;4)</a>.
</div></div></div></div></div></div><div class="div1">
<h2><a name="typesystem" id="typesystem" shape="rect"></a>2 Datatype System</h2><p>This section describes the conceptual framework behind the datatype system defined in this
specification.&#160; The framework has been influenced by the
<a href="#ISO11404" shape="rect">[ISO 11404]</a> standard on language-independent datatypes as
well as the datatypes for <a href="#SQL" shape="rect">[SQL]</a> and for programming
languages such as Java.</p><p>The datatypes discussed in this specification are for the most part well known abstract
concepts such as <em>integer</em> and <em>date</em>. It is not
the place of this specification to thoroughly define these abstract concepts; many
other publications provide excellent definitions. However, this specification will attempt to describe the
abstract concepts well enough that they can be readily recognized and
distinguished from other abstractions with which they may be
confused.</p><div class="note"><div class="p"><b>Note:</b> Only those operations and relations needed for schema processing
are defined in this specification. Applications using these datatypes
are generally expected to implement appropriate additional functions
and/or relations to make the datatype generally useful.&#160; For
example, the description herein of the <a href="#float" shape="rect">float</a> datatype
does not define addition or multiplication, much less all of the
operations defined for that datatype in <a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a> on
which it is based.&#160;
For some datatypes (e.g.
<a href="#language" shape="rect">language</a> or <a href="#anyURI" shape="rect">anyURI</a>) defined in part by
reference to other specifications which impose constraints not part of
the datatypes as defined here, applications may also wish to check
that values conform to the requirements given in the current version
of the relevant external specification.
</div></div><div class="div2">
<h3><span class="nav"> <a href="#value-space" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="datatype" id="datatype" shape="rect"></a>2.1 Datatype</h3><div class="p"><div class="termdef"><a name="dt-datatype" id="dt-datatype" title="" shape="rect">[Definition:]&#160;&#160;</a>In
this specification, a <b>datatype</b> has
three properties:
<ul><li><div class="p">A <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, which is a set of
values. </div></li><li><div class="p">A <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>, which is a set of
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> used to denote the values.</div></li><li><div class="p">A small collection of <em>functions, relations, and
procedures</em> associated with the datatype.&#160; Included are
equality and (for some datatypes)
order relations on the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, and a
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>, which is a mapping from the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>
into
the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.</div></li></ul>
</div>
</div><div class="note"><div class="p"><b>Note:</b> This specification only defines the operations and relations needed
for schema processing.&#160; The choice of terminology for
describing/naming the datatypes is selected to guide users and
implementers in how to expand the datatype to be generally
useful&#8212;i.e., how to recognize the "real world"
datatypes and their variants for which the datatypes defined herein
are meant to be used for data interchange.</div></div><p>Along with the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> it is
often useful to have an inverse which provides a standard
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> for each value.&#160; Such
a <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is not required for
schema processing, but is described herein for the benefit of users of
this specification, and other specifications which might find it
useful to reference these descriptions normatively.
For some datatypes, notably
<a href="#QName" shape="rect">QName</a> and <a href="#NOTATION" shape="rect">NOTATION</a>, the mapping from
lexical representations to values is context-dependent; for these
types, no <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is defined.</p><div class="note"><div class="p"><b>Note:</b>
Where <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mappings<span class="arrow">&#183;</span></a> are defined in this specification, they are
defined for <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes. When a datatype is derived using facets which directly
constrain the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, then for each value eliminated from the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, the corresponding lexical representations are dropped
from the lexical space. The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> for such a datatype is
a subset of the <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> for its <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> type and
provides a <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for each value remaining in the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.
</div><div class="p">
The <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a>
facet, on the other hand, and
any other (<a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a>)
<a href="#dt-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical<span class="arrow">&#183;</span></a> facets,
restrict
the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> directly. When more than one lexical
representation is provided for a given value,
such facets
may
remove the <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> while
permitting a different lexical representation; in this case, the value
remains in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> but has no <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.
This specification provides no recourse in such situations.
Applications are free to deal with it as they see fit.
</div></div><div class="note"><div class="p"><b>Note:</b> This specification sometimes uses the shorter form "type"
where one might strictly speaking expect the longer form
"datatype" (e.g. in the phrases
"union type", "list type",
"base type", "item type", etc.
No systematic distinction is intended between
the forms of these phrase with "type" and
those with "datatype";
the two forms are used interchangeably.</div><div class="p">The distinction between "datatype"
and "simple type definition", by contrast,
carries more information: the datatype is characterized by its
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>, <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>, etc., as
just described, independently of the specific facets or
other definitional mechanisms used in the simple type
definition to describe that particular <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
or <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>. Different simple type definitions
with different selections of facets can describe the
same datatype.
</div></div></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#datatype" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#lexical-space" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="value-space" id="value-space" shape="rect"></a>2.2 Value space</h3><div class="localToc">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.2.1 <a href="#identity" shape="rect">Identity</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.2.2 <a href="#equality" shape="rect">Equality</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.2.3 <a href="#order" shape="rect">Order</a><br clear="none" />
</div><p><span class="termdef"><a name="dt-value-space" id="dt-value-space" title="" shape="rect">[Definition:]&#160;&#160;</a>The <b>value space</b> <em>of a
datatype</em> is the set of values for that
datatype.</span>&#160; Associated with each value space are
selected operations and relations necessary to permit proper schema
processing.&#160; Each value in the value space of a
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> or <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
datatype is
denoted by one or more character strings in its <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>,
according to <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>the lexical
mapping<span class="arrow">&#183;</span></a>; <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a>
datatypes, by contrast, may include "ineffable"
values not mapped to by any lexical representation.
(If the mapping is restricted during a
derivation in such a way that a value has no denotation, that value is
dropped from the value space.)</p><p>The value spaces of datatypes are abstractions,
and are defined in <a href="#built-in-datatypes" shape="rect">Built-in Datatypes and Their Definitions (&#167;3)</a>
to the extent needed to clarify them for readers.&#160; For example,
in defining the numerical datatypes, we assume some general numerical
concepts such as number and integer are known.&#160; In many cases we
provide references to other documents providing more complete
definitions.</p><div class="note"><div class="p"><b>Note:</b> <em>The value spaces and the values therein are
abstractions.</em>&#160; This specification does not prescribe any
particular internal representations that must be used when
implementing these datatypes.&#160; In some cases, there are
references to other specifications which do prescribe specific
internal representations; these specific internal representations must
be used to comply with those other specifications, but need not be
used to comply with this specification.</div><div class="p">In addition, other applications are expected to define additional
appropriate operations and/or relations on these value spaces (e.g.,
addition and multiplication on the various numerical datatypes'
value spaces), and are permitted where appropriate to even redefine
the operations and relations defined within this specification,
provided that <em>for schema processing the relations and operations
used are those defined herein</em>.</div></div><div class="block">The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of a datatype can
be defined in one of the following ways:
<ul><li><div class="p">defined elsewhere
axiomatically from fundamental notions (intensional definition) [see
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>]</div></li><li><div class="p">enumerated outright from values
of an already defined datatype (extensional definition) [see
<a href="#dt-enumeration" class="termref" shape="rect"><span class="arrow">&#183;</span>enumeration<span class="arrow">&#183;</span></a>]</div></li><li><div class="p">defined by restricting the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of an already
defined datatype to a particular subset with a given set of properties
[see <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>]</div></li><li><div class="p">defined as a combination of values from one or more already
defined <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>(s) by a specific construction procedure [see
<a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> and <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>]</div></li></ul></div><p>The relations of <em>identity</em>
and
<em>equality</em>
are required for each
value space. An
order relation is specified for some value spaces, but not
all.
A very few datatypes have other relations or
operations prescribed for the purposes of this specification.</p><div class="div3">
<h4><a name="identity" id="identity" shape="rect"></a>2.2.1 Identity</h4><p>The identity relation is always defined. Every value space
inherently has an identity relation. Two things are
<em>identical</em> if and only
if they are actually the same thing: i.e., if there is no way
whatever to tell them apart.&#160;
</p><div class="note"><div class="p"><b>Note:</b> This does not preclude implementing datatypes by using more than
one <em>internal</em> representation for a given value, provided
no mechanism inherent in the datatype implementation (i.e., other than
bit-string-preserving "casting" of the datum to a different
datatype) will distinguish between the two representations.</div></div><p>In the identity relation defined herein, values from different
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes' <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a> are made artificially
distinct if they might otherwise be considered identical.&#160; For
example, there is a number <em>two</em> in the <a href="#decimal" shape="rect">decimal</a> datatype and a number <em>two</em> in the <a href="#float" shape="rect">float</a> datatype.&#160; In the identity relation defined herein,
these two values are considered distinct.&#160; Other applications
making use of these datatypes may choose to consider values such as
these identical, but for the view of <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes'
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a> used herein, they are distinct.</p><p><em>WARNING:</em>&#160; Care must be taken when identifying
values across distinct primitive datatypes.&#160; The
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> '<code>0.1</code>' and '<code>0.10000000009</code>' map
to the same value in <a href="#float" shape="rect">float</a> (neither 0.1 nor 0.10000000009 is in the value space, and
each literal is mapped to the
nearest value, namely 0.100000001490116119384765625), but map to
distinct values in <a href="#decimal" shape="rect">decimal</a>.</p><div class="note"><div class="p"><b>Note:</b> Datatypes <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> by <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a> do not create new
values; they define subsets of some <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatype's
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>. A consequence of this fact is that the <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>
'<code>+2</code>', treated as a <a href="#decimal" shape="rect">decimal</a>,
'<code>+2</code>', treated as an <a href="#integer" shape="rect">integer</a>, and
'<code>+2</code>', treated as a <a href="#byte" shape="rect">byte</a>, all denote the
same value. They are not only equal but identical.</div></div><p>Given a list <var>A</var> and a list <var>B</var>, <var>A</var> and <var>B</var>
are the same list if they are the same sequence of atomic values.
The necessary and sufficient conditions for this identity are
that <var>A</var> and <var>B</var> have the same length and that the items of <var>A</var>
are pairwise identical to the items of <var>B</var>.
</p><div class="note"><div class="p"><b>Note:</b> It is a consequence of the rule just given for list identity
that there is only one empty list. An empty list declared as
having <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> <a href="#decimal" shape="rect">decimal</a> and an empty
list declared as having <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> <a href="#string" shape="rect">string</a>
are not only equal but identical.
</div></div></div><div class="div3">
<h4><a name="equality" id="equality" shape="rect"></a>2.2.2 Equality</h4><p>Each <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatype has prescribed an equality relation for
its value space.&#160; The equality relation for most datatypes is the
identity relation.&#160; In the few cases where it is not,
equality
has been carefully defined so that for
most operations of
interest to the datatype, if
two values are equal and one is substituted for the other as an
argument to any of the operations, the results will always also be
equal.</p><p>On the other hand, equality need not cover the entire value space
of the datatype (though it usually does). In
particular, NaN
is not equal to itself in the
<a href="#float" shape="rect">float</a> and
<a href="#double" shape="rect">double</a> datatypes.</p><p>This
equality relation is used in
conjunction with identity when
making <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restrictions<span class="arrow">&#183;</span></a> by <em>enumeration</em>,
when checking identity constraints (in the context of
<a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>)
and when checking value
constraints. It is used in
conjunction with order when making
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restrictions<span class="arrow">&#183;</span></a> involving order. The
equality relation used in the evaluation of XPath expressions
may differ.&#160; When
<a href="http://www.w3.org/TR/xpath20/#id-expression-processing" shape="rect">processing
XPath expressions</a> as part of XML schema-validity
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-va" shape="rect">assessment</a> or
otherwise testing membership in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
of a datatype whose derivation involves <a href="#dt-assertions" class="termref" shape="rect"><span class="arrow">&#183;</span>assertions<span class="arrow">&#183;</span></a>,
equality (like all other relations) within those expressions is interpreted
using the rules of XPath (<a href="#XPATH2" shape="rect">[XPath 2.0]</a>).&#160;
All comparisons for
"sameness" prescribed by this specification
test for either
equality or identity,
not for identity alone.</p><div class="note"><div class="p"><b>Note:</b> In the prior version of this specification (1.0), equality was
always identity.&#160; This has been changed to permit the datatypes
defined herein to more closely match the "real world"
datatypes for which they are intended to be used as transmission
formats.</div><div class="p">For example, the <a href="#float" shape="rect">float</a> datatype has an equality
which is not the identity (&#160;&#8722;0&#160;=&#160;+0&#160;, but
they are not identical&#8212;although they <em>were</em> identical
in the 1.0 version of this specification), and whose domain excludes
one value, NaN, so that&#160; NaN&#160;&#8800;&#160;NaN&#160;.</div><div class="p">For another example, the <a href="#dateTime" shape="rect">dateTime</a> datatype
previously lost any time-zone offset information in the
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> as the value was converted to
<a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a>;
now the time zone offset
is retained and two values representing the same "moment in
time" but with different remembered time zone offsets are now
<em>equal</em> but not <em>identical</em>.</div></div><p>In the equality relation defined herein, values from different
primitive data spaces are made artificially unequal even if they might
otherwise be considered equal.&#160; For example, there is a number
<em>two</em> in the <a href="#decimal" shape="rect">decimal</a> datatype and a number
<em>two</em> in the <a href="#float" shape="rect">float</a> datatype.&#160; In the
equality relation defined herein, these two values are considered
unequal.&#160; Other applications making use of these datatypes may
choose to consider values such as these equal;
nonetheless, in the equality relation defined herein, they are unequal.</p><p>Two lists <var>A</var> and <var>B</var> are equal if and
only if they have the same length and their items are pairwise equal.
A list of length one containing a value <var>V1</var> and an atomic value
<var>V2</var> are equal if and only if <var>V1</var> is equal to <var>V2</var>.
</p><p>For the purposes of this specification, there is one equality
relation for all values of all datatypes (the union of the various
datatype's individual equalities, if one consider relations to be
sets of ordered pairs).&#160; The <em>equality</em> relation is
denoted by '=' and its negation by
'&#8800;', each used as
a binary infix predicate:&#160;
<var>x</var>&#160;=&#160;<var>y</var>&#160; and&#160;
<var>x</var>&#160;&#8800;&#160;<var>y</var>&#160;.&#160; On the other
hand, <em>identity</em> relationships are always described in
words.</p></div><div class="div3">
<h4><a name="order" id="order" shape="rect"></a>2.2.3 Order</h4><p>For some
datatypes, an order relation is prescribed
for use in checking
upper and lower bounds of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.&#160; This order may be
a <em>partial</em> order, which means that there may be values in
the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> which are neither equal, less-than, nor
greater-than.&#160; Such value pairs are
<em>incomparable</em>.&#160; In many cases,
no order
is prescribed; each pair of values is either
equal or <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a>.
<span class="termdef"><a name="dt-incomparable" id="dt-incomparable" title="" shape="rect">[Definition:]&#160;&#160;</a>Two
values that are neither equal, less-than, nor greater-than are
<b>incomparable</b>. Two values
that are not <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> are
<b>comparable</b>.</span></p><p>The order relation is used
in conjunction with equality when making <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restrictions<span class="arrow">&#183;</span></a>
involving order.&#160; This is the only use of
this
order relation for schema
processing.&#160; Of course, when
<a href="http://www.w3.org/TR/xpath20/#id-expression-processing" shape="rect">processing
XPath expressions</a> as part of XML schema-validity
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-va" shape="rect">assessment</a> or
otherwise testing membership in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
of a datatype whose derivation involves <a href="#dt-assertions" class="termref" shape="rect"><span class="arrow">&#183;</span>assertions<span class="arrow">&#183;</span></a>,
order (like all other relations) within those expressions is interpreted
using the rules of XPath (<a href="#XPATH2" shape="rect">[XPath 2.0]</a>).</p><p>In this specification, this less-than order relation is denoted by
'&lt;' (and its inverse by '&gt;'),
the weak order by '&#8804;' (and its inverse by
'&#8805;'), and the resulting <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> relation by
'&lt;&gt;', each used as a binary infix predicate:&#160;
<var>x</var>&#160;&lt;&#160;<var>y</var>&#160;,&#160;
<var>x</var>&#160;&#8804;&#160;<var>y</var>&#160;,&#160;
<var>x</var>&#160;&gt;&#160;<var>y</var>&#160;,&#160;
<var>x</var>&#160;&#8805;&#160;<var>y</var>&#160;, and&#160;
<var>x</var>&#160;&lt;&gt;&#160;<var>y</var>&#160;.</p><div class="note"><div class="p"><b>Note:</b> The weak order "less-than-or-equal" means
"less-than" or "equal" <em>and one
can tell which</em>.&#160; For example, the <a href="#duration" shape="rect">duration</a> P1M (one month) is <em>not</em>
less-than-or-equal P31D (thirty-one days) because P1M is not less than
P31D, nor is P1M equal to P31D.&#160; Instead, P1M is <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> with P31D.)&#160; The formal
definition of order for <a href="#duration" shape="rect">duration</a> (<a href="#duration" shape="rect">duration (&#167;3.3.6)</a>)
ensures
that this is true.</div></div><p>For
purposes of this specification, the value spaces of primitive datatypes are
disjoint, even in cases where the
abstractions they represent might be thought of as having
values in common.&#160; In the order
relations defined in this specification, values from
different value spaces are
<a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a>.&#160; For example, the numbers two
and three are values in both the
decimal
datatype and the float datatype.&#160; In the order relation defined
here,
the two in the decimal datatype
is
not less than the three in the float datatype;
the two values are
incomparable.&#160; Other
applications making use of these
datatypes may choose to consider values such as these comparable.</p><div class="note"><div class="p"><b>Note:</b> Comparison of values from different <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes
can sometimes be an error and sometimes not, depending on context.
</div><div class="p">
When made for purposes of checking an enumeration constraint,
such a comparison is not in itself an error, but since
no
two values from different <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a> are
equal, any
comparison of <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> values will invariably be false.
</div><div class="p">
Specifying an upper or lower bound which is of the wrong primitive
datatype (and therefore <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> with the values of the datatype
it is supposed to restrict) is, by contrast, always an error.
It is a consequence of the rules for
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a> that in conforming simple type definitions, the
values of upper and lower bounds, and enumerated values, <span class="rfc2119">must</span> be
drawn from the value space of the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>, which necessarily means
from the same <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatype.
</div><div class="p">
Comparison of <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> values in the context of an XPath
expression (e.g. in an assertion or in the rules for conditional type
assignment) can raise a dynamic error in the evaluation of the XPath
expression; see <a href="#F_O" shape="rect">[XQuery 1.0 and XPath 2.0 Functions and Operators]</a> for details.</div></div></div></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#value-space" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#datatype-dichotomies" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="lexical-space" id="lexical-space" shape="rect"></a>2.3 The Lexical Space and Lexical Mapping</h3><p><span class="termdef"><a name="dt-lexical-mapping" id="dt-lexical-mapping" title="" shape="rect">[Definition:]&#160;&#160;</a>The
<b>lexical mapping</b> for a datatype is a prescribed
relation
which maps from the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of the datatype
into its <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.</span></p><p><span class="termdef"><a name="dt-lexical-space" id="dt-lexical-space" title="" shape="rect">[Definition:]&#160;&#160;</a>The
<b>lexical space</b> of a datatype is
the prescribed set of strings
which
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>the lexical
mapping<span class="arrow">&#183;</span></a> for that datatype
maps to values of that datatype.</span></p><p><span class="termdef"><a name="dt-lexical-representation" id="dt-lexical-representation" title="" shape="rect">[Definition:]&#160;&#160;</a>The members of the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> are
<b>lexical representations</b> of the values to which they are
mapped.</span></p><div class="note"><div class="p"><b>Note:</b> For the <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a> datatypes, the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> defined
here map from the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> into, but not onto, the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.
The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a> of the <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a> datatypes
include "ineffable" values for which the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> defined
in this specification provide no lexical representation.</div><div class="p">For the <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> and <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> atomic datatypes, the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> is a
(total)
function on the entire <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> <em>onto</em> (not merely
<em>into</em>) the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>: every member of the
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> maps into the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, and every value is mapped
to by some member of the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>.</div><div class="p">For <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatypes, the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
is not necessarily a function, since the same <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> may map to
different values in different member types. For <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatypes,
the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> is a function if and only if the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
of the list's <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> is a function.
</div></div><p>
<span class="termdef"><a name="dt-literal" id="dt-literal" title="" shape="rect">[Definition:]&#160;&#160;</a>A sequence of zero or more
characters in the Universal Character Set (UCS) which may or may not
prove upon inspection to be a member of the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of a given
datatype and thus a <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> of a given value in that datatype's
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, is referred to as a <b>literal</b>.</span> The
term is used indifferently both for character sequences which are
members of a particular <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> and for those which are
not.</p><p>If a derivation introduces a
<a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> facet value (a new value for
<a href="#f-w" class="compref" shape="rect">whiteSpace</a> or an implementation-defined
<a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> facet), the corresponding
<a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> transformation of a character string,
if indeed it changed that string, could prevent that string from ever
having the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> of the derived datatype
applied to it.&#160; Character strings that a
<a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> transformation blocks in this way
(i.e., they are not in the range of the <a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a>
facet's transformation) are always dropped from the derived datatype's
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>.</p><div class="note"><div class="p"><b>Note:</b> One should be aware that in the context of XML
schema-validity
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-va" shape="rect">assessment</a>,
there are <a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> transformations of the
input character string
(controlled by the
<a href="#f-w" class="compref" shape="rect">whiteSpace</a> facet and any implementation-defined
<a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a>
facets)
which result in the intended <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a>.&#160;
Systems other than
XML schema-validity
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-va" shape="rect">assessment</a>
utilizing this specification may or may not implement these
transformations.&#160; If they do not, then input character strings
that would have been transformed into correct
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a>,
when taken "raw", may not be
correct <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical
representations<span class="arrow">&#183;</span></a>.</div></div><p>Should a derivation be made using a derivation mechanism that
removes <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> from the<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> to the
extent that one or more values cease to have any
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>, then those values are dropped from the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.</p><div class="note"><div class="p"><b>Note:</b> This could happen by means of a <a href="#f-p" class="compref" shape="rect">pattern</a>
or other <a href="#dt-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical<span class="arrow">&#183;</span></a>
facet, or by a
<a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> facet as described above.</div></div><p>Conversely, should a derivation remove values then their
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> are dropped from the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> unless
there is a facet value whose impact is defined to cause the
otherwise-dropped <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> to be mapped to another
value instead.</p><div class="note"><div class="p"><b>Note:</b> There are currently no facets with such an impact.&#160; There may
be in the future.</div></div><p>For example, '100' and '1.0E2' are two
different <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> from the <a href="#float" shape="rect">float</a>
datatype which
both denote the same value.&#160; The datatype system defined in this
specification provides mechanisms for schema designers to control the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> and the corresponding set of acceptable
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> of those values for a datatype.</p><div class="div3">
<h4><a name="canonical-lexical-representation" id="canonical-lexical-representation" shape="rect"></a>2.3.1 Canonical Mapping</h4><p>While the datatypes defined in this specification often have a single <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> for
each value (i.e., each value in the datatype's <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> is
denoted by a single <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>representation<span class="arrow">&#183;</span></a> in its
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>), this is not always the case.&#160; The example in
the previous section shows two <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> from the
<a href="#float" shape="rect">float</a> datatype which denote the same value.</p><p><span class="termdef"><a name="dt-canonical-mapping" id="dt-canonical-mapping" title="" shape="rect">[Definition:]&#160;&#160;</a>The
<b>canonical mapping</b> is a prescribed subset of the inverse of a
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> which is
one-to-one and whose domain (where possible) is the entire range of the
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> (the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>).</span>&#160; Thus a
<a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> selects one
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> for each
value in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.</p><p><span class="termdef"><a name="dt-canonical-representation" id="dt-canonical-representation" title="" shape="rect">[Definition:]&#160;&#160;</a>The <b>canonical
representation</b> of a value in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of a datatype is
the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> associated with that value by the
datatype's <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a></span>.</p><p><a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>Canonical
mappings<span class="arrow">&#183;</span></a> are not available for datatypes whose
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> are context dependent (i.e., mappings for which the
value of a <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> depends on the context in which it
occurs, or for which a character string may or may not be a valid
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> similarly depending on its context)</p><div class="note"><div class="p"><b>Note:</b> <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>Canonical
representations<span class="arrow">&#183;</span></a> are provided where feasible for the use of
other applications; they are not required for schema processing
itself.&#160; <em>A conforming schema processor implementation is
not required to implement <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical
mappings<span class="arrow">&#183;</span></a>.</em></div></div></div></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#lexical-space" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="datatype-dichotomies" id="datatype-dichotomies" shape="rect"></a>2.4 Datatype
Distinctions</h3><div class="localToc">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.4.1 <a href="#atomic-vs-list" shape="rect">Atomic vs. List vs. Union Datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.4.1.1 <a href="#atomic" shape="rect">Atomic Datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.4.1.2 <a href="#list-datatypes" shape="rect">List Datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.4.1.3 <a href="#union-datatypes" shape="rect">Union datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.4.2 <a href="#primitive-vs-derived" shape="rect">Special vs. Primitive vs.
Ordinary
Datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.4.2.1 <a href="#restriction" shape="rect">Facet-based Restriction</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.4.2.2 <a href="#list" shape="rect">Construction by List</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.4.2.3 <a href="#union" shape="rect">Construction by Union</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.4.3 <a href="#derivation" shape="rect">Definition, Derivation, Restriction, and Construction</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;2.4.4 <a href="#built-in-vs-user-derived" shape="rect">Built-in vs. User-Defined Datatypes</a><br clear="none" />
</div><p>It is useful to categorize the datatypes defined in this
specification along various dimensions, defining terms which
can be used to characterize datatypes and the <a href="#std" shape="rect">Simple Type Definition</a>s
which define them.</p><div class="div3">
<h4><a name="atomic-vs-list" id="atomic-vs-list" shape="rect"></a>2.4.1 Atomic vs. List vs. Union Datatypes</h4><p>First, we distinguish <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>,
<a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>, and <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatypes.</p><p><span class="termdef"><a name="dt-atomic-value" id="dt-atomic-value" title="" shape="rect">[Definition:]&#160;&#160;</a>An
<b>atomic value</b> is an elementary value, not
constructed from simpler values by any user-accessible
means defined by this specification.</span></p><ul><li><div class="p"><span class="termdef"><a name="dt-atomic" id="dt-atomic" title="" shape="rect">[Definition:]&#160;&#160;</a><b>Atomic</b> datatypes
are those whose
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a> contain only <a href="#dt-atomic-value" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic values<span class="arrow">&#183;</span></a>.&#160;
<b>Atomic</b> datatypes are <a href="#anyAtomicType" shape="rect">anyAtomicType</a> and all
datatypes
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from it.</span></div></li><li><div class="p"><span class="termdef"><a name="dt-list" id="dt-list" title="" shape="rect">[Definition:]&#160;&#160;</a><b>List</b> datatypes are
those having values each of which consists of a finite-length
(possibly empty) sequence of <a href="#dt-atomic-value" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic values<span class="arrow">&#183;</span></a>. The values in a list are
drawn from some
<a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatype (or from
a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> of <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatypes), which is
the <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> of the <b>list</b>. </span></div><div class="note"><div class="p"><b>Note:</b> It is a consequence of constraints normatively specified elsewhere
in this document (in particular,
the component properties specified in
<a href="#dc-defn" shape="rect">The Simple Type Definition Schema Component (&#167;4.1.1)</a>)
that the <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> of a list <span class="rfc2119">may</span> be any <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>
datatype, or any <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatype whose <a href="#dt-basicmember" class="termref" shape="rect"><span class="arrow">&#183;</span>basic members<span class="arrow">&#183;</span></a> are all
<a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatypes
(so a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> of <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatypes is possible, but not a
<a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> of <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>lists<span class="arrow">&#183;</span></a>). The <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> of a list <span class="rfc2119">must not</span>
itself be a list datatype.</div></div></li><li><div class="p"><span class="termdef"><a name="dt-union" id="dt-union" title="" shape="rect">[Definition:]&#160;&#160;</a><b>Union</b> datatypes
are (a) those whose <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a>,
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>, and
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> are the union of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a>,
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>, and
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> of one or more other datatypes, which are the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of the
union, or (b) those derived by
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a> of another union datatype. </span></div><div class="note"><div class="p"><b>Note:</b> It is a consequence of constraints normatively specified
elsewhere in this document (in particular,
the component properties specified in
<a href="#dc-defn" shape="rect">The Simple Type Definition Schema Component (&#167;4.1.1)</a>)
that any <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> or <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatype <span class="rfc2119">may</span> occur
among the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>. (In particular,
<a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatypes may themselves be members of
<a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>unions<span class="arrow">&#183;</span></a>, as may <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>lists<span class="arrow">&#183;</span></a>.) The only prohibition is that no <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a>
datatype may be a member of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>.
</div></div></li></ul><p>For example, a single token which <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>matches<span class="arrow">&#183;</span></a> <a href="http://www.w3.org/TR/xml11/#NT-Nmtoken" shape="rect">Nmtoken</a> from
<a href="#XML" shape="rect">[XML]</a> is in the value
space of the <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatype <a href="#NMTOKEN" shape="rect">NMTOKEN</a>, while a sequence of such tokens is in the value space of the <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>
datatype <a href="#NMTOKENS" shape="rect">NMTOKENS</a>.
</p><div class="div4">
<h5><a name="atomic" id="atomic" shape="rect"></a>2.4.1.1 Atomic Datatypes</h5><p>An <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatype has a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
consisting of a set of "atomic" or elementary values.</p><div class="note"><div class="p"><b>Note:</b> Atomic values are sometimes regarded, and described, as "not
decomposable", but in fact the values in several datatypes
defined here are described with internal structure, which is appealed
to in checking whether particular values satisfy various constraints
(e.g. upper and lower bounds on a datatype). Other specifications
which use the datatypes defined here may define operations which
attribute internal structure to values and expose or act upon that
structure.</div></div><p>
The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of an <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatype is a set of <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>
whose internal structure is specific to the datatype in
question.</p><p>There is one <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a> <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatype
(<a href="#anyAtomicType" shape="rect">anyAtomicType</a>), and a number of <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>
datatypes which have <a href="#anyAtomicType" shape="rect">anyAtomicType</a> as their
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.&#160; All other <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatypes are <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> either
from one of the <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatypes or from another
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatype.&#160; No <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a> datatype <span class="rfc2119">may</span> have
<a href="#anyAtomicType" shape="rect">anyAtomicType</a> as its <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.</p></div><div class="div4">
<h5><a name="list-datatypes" id="list-datatypes" shape="rect"></a>2.4.1.2 List Datatypes</h5><p><a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>List<span class="arrow">&#183;</span></a> datatypes are always <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> from some other type; they are never
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>. The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype is
the set of finite-length sequences of
zero or more
<a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>
values
where each <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> value is drawn from the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the lists's <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a>
and has a <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> containing no
whitespace.
The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of a
<a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype is a set of
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>
each
of which
is a space-separated sequence of
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>
of the
<a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a>.</p><p><span class="termdef"><a name="dt-itemType" id="dt-itemType" title="" shape="rect">[Definition:]&#160;&#160;</a>
The <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> or <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
datatype that participates in the definition of a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype
is the
<b>item type</b>
of that <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype.</span>&#160; If
the <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> is a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, each of its
<a href="#dt-basicmember" class="termref" shape="rect"><span class="arrow">&#183;</span>basic members<span class="arrow">&#183;</span></a> <span class="rfc2119">must</span> be
<a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>.</p><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleInner">
<pre xml:space="preserve">
&lt;simpleType name='sizes'&gt;
&lt;list itemType='decimal'/&gt;
&lt;/simpleType&gt;
</pre></div><div class="exampleInner">
<pre xml:space="preserve">
&lt;cerealSizes xsi:type='sizes'&gt; 8 10.5 12 &lt;/cerealSizes&gt;
</pre></div></div><p>A <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype can be
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>
from an ordinary
or
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>
datatype whose <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> allows
whitespace
(such as <a href="#string" shape="rect">string</a> or <a href="#anyURI" shape="rect">anyURI</a>) or a
<a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatype any of whose
<a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a>'s
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> allows space.
Since <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>
items are separated at whitespace before the
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a>
of the items are mapped to values, no whitespace will ever occur
in the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>
of a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> item, even when the item
type would in principle allow it.&#160;
For the same reason, when every possible
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> of a given
value in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a>
includes whitespace,
that value can never occur as an item in any value of the
<a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype.</p><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleInner">
<pre xml:space="preserve">
&lt;simpleType name='listOfString'&gt;
&lt;list itemType='string'/&gt;
&lt;/simpleType&gt;
</pre></div><div class="exampleInner">
<pre xml:space="preserve">
&lt;someElement xsi:type='listOfString'&gt;
this is not list item 1
this is not list item 2
this is not list item 3
&lt;/someElement&gt;
</pre></div><div class="exampleWrapper">
<div class="p">In the above example, the value of the <em>someElement</em> element
is not a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> of <a href="#dt-length" class="termref" shape="rect"><span class="arrow">&#183;</span>length<span class="arrow">&#183;</span></a> 3;
rather, it is a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> of <a href="#dt-length" class="termref" shape="rect"><span class="arrow">&#183;</span>length<span class="arrow">&#183;</span></a>
18.</div></div></div><div class="block">When a datatype is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
by
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restricting<span class="arrow">&#183;</span></a> a
<a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype, the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> apply:
<ul><li><div class="p"><a href="#dt-length" class="termref" shape="rect"><span class="arrow">&#183;</span>length<span class="arrow">&#183;</span></a></div></li><li><div class="p"><a href="#dt-maxLength" class="termref" shape="rect"><span class="arrow">&#183;</span>maxLength<span class="arrow">&#183;</span></a></div></li><li><div class="p"><a href="#dt-minLength" class="termref" shape="rect"><span class="arrow">&#183;</span>minLength<span class="arrow">&#183;</span></a></div></li><li><div class="p"><a href="#dt-enumeration" class="termref" shape="rect"><span class="arrow">&#183;</span>enumeration<span class="arrow">&#183;</span></a></div></li><li><div class="p"><a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a></div></li><li><div class="p"><a href="#dt-whiteSpace" class="termref" shape="rect"><span class="arrow">&#183;</span>whiteSpace<span class="arrow">&#183;</span></a></div></li><li><div class="p"><a href="#dt-assertions" class="termref" shape="rect"><span class="arrow">&#183;</span>assertions<span class="arrow">&#183;</span></a></div></li></ul>
</div><p>For each of <a href="#dt-length" class="termref" shape="rect"><span class="arrow">&#183;</span>length<span class="arrow">&#183;</span></a>, <a href="#dt-maxLength" class="termref" shape="rect"><span class="arrow">&#183;</span>maxLength<span class="arrow">&#183;</span></a>
and <a href="#dt-minLength" class="termref" shape="rect"><span class="arrow">&#183;</span>minLength<span class="arrow">&#183;</span></a>, the
<em>length</em> is
measured in number
of list
items.&#160; The value of <a href="#dt-whiteSpace" class="termref" shape="rect"><span class="arrow">&#183;</span>whiteSpace<span class="arrow">&#183;</span></a>
is fixed to the value <b><i>collapse</i></b>.</p><p>For <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatypes the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>
is composed of space-separated
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>
of the
<a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a>.&#160;
Any
<a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a> specified when a new datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype
applies
to the members of the <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype's
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>, not to the members of the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>
of the <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a>.&#160; Similarly,
enumerated
values are compared to the entire <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>, not to
individual list items,
and <a href="#f-a" class="compref" shape="rect">assertions</a> apply to the entire <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> too.
Lists are identical if and only if they have the
same length and their items are pairwise identical; they are
equal if and only if they have the same length and their items
are pairwise equal. And
a list of length one whose item is an atomic value <var>V1</var> is
equal or identical
to an atomic value <var>V2</var>
if and only if <var>V1</var> is
equal or identical
to <var>V2</var>.
</p><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleInner">
<pre xml:space="preserve">&lt;xs:simpleType name='myList'&gt;
&lt;xs:list itemType='xs:integer'/&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name='myRestrictedList'&gt;
&lt;xs:restriction base='myList'&gt;
&lt;xs:pattern value='123 (\d+\s)*456'/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;someElement xsi:type='myRestrictedList'&gt;123 456&lt;/someElement&gt;
&lt;someElement xsi:type='myRestrictedList'&gt;123 987 456&lt;/someElement&gt;
&lt;someElement xsi:type='myRestrictedList'&gt;123 987 567 456&lt;/someElement&gt;
</pre></div></div><p>The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> of a
<a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype maps each value onto the
space-separated concatenation of the
<a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical
representations<span class="arrow">&#183;</span></a> of all the items in the value
(in order), using the <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> of the
<a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a>.</p></div><div class="div4">
<h5><a name="union-datatypes" id="union-datatypes" shape="rect"></a>2.4.1.3 Union datatypes</h5><p>
</p><p> Union types
may be defined in either of two ways. When a union type is
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> by <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, its <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>, and
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> are the "ordered unions" of the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a>, <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>, and <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> of its
<a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a>.</p><p>It will be observed that the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> of a union, so
defined, is not necessarily a function: a given <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> may map to
one value or to several values of different <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes, and
it may be indeterminate which value is to be preferred in a particular
context. When the datatypes defined here are used in the context of
<a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>, the <code>xsi:type</code> attribute defined by that
specification in section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#xsi_type" shape="rect">xsi:type</a> can be used to indicate
which value a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> which is the content of an element should map
to. In other contexts, other rules (such as type coercion rules) may
be employed to determine which value is to be used.</p><p>When a union type is defined by
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restricting<span class="arrow">&#183;</span></a> another <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, its <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>,
and <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> are subsets of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a>,
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>, and <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> of its
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.</p><p><a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>Union<span class="arrow">&#183;</span></a> datatypes are always <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> from other
datatypes; they are never <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>. Currently,
there are no <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>&#160;<a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatypes.</p><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">A prototypical example of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> type is the
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#p-max_occurs" shape="rect">maxOccurs attribute</a> on the
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-element" shape="rect">element element</a>
in XML Schema itself: it is a union of nonNegativeInteger
and an enumeration with the single member, the string "unbounded", as shown below.</div></div><div class="exampleInner">
<pre xml:space="preserve">
&lt;attributeGroup name="occurs"&gt;
&lt;attribute name="minOccurs" type="nonNegativeInteger"
use="optional" default="1"/&gt;
&lt;attribute name="maxOccurs"use="optional" default="1"&gt;
&lt;simpleType&gt;
&lt;union&gt;
&lt;simpleType&gt;
&lt;restriction base='nonNegativeInteger'/&gt;
&lt;/simpleType&gt;
&lt;simpleType&gt;
&lt;restriction base='string'&gt;
&lt;enumeration value='unbounded'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;
&lt;/union&gt;
&lt;/simpleType&gt;
&lt;/attribute&gt;
&lt;/attributeGroup&gt;
</pre></div></div><p>Any number (zero or more)
of ordinary
or
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>
<a href="#dt-datatype" class="termref" shape="rect"><span class="arrow">&#183;</span>datatypes<span class="arrow">&#183;</span></a>
can participate in a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> type.</p><p><span class="termdef"><a name="dt-memberTypes" id="dt-memberTypes" title="" shape="rect">[Definition:]&#160;&#160;</a>
The datatypes that participate in the
definition of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatype are known as the
<b>member types</b>
of that <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatype.</span></p><div class="note"><div class="p"><b>Note:</b> When datatypes are represented using XSD schema components, as
described in <a href="#datatype-components" shape="rect">Datatype components (&#167;4)</a>, the member types of
a union are those simple type definitions given in the <a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a> property.
</div></div><p><span class="termdef"><a name="dt-transitivemembership" id="dt-transitivemembership" title="" shape="rect">[Definition:]&#160;&#160;</a>The <b>transitive membership</b> of
a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> is the set of its own <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a>, and the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a>
of its members, and so on. More formally, if <var>U</var> is a
<a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, then (a) its <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> are in the transitive membership
of <var>U</var>, and (b) for any datatypes <var>T1</var> and
<var>T2</var>, if <var>T1</var> is in the transitive membership of
<var>U</var> and <var>T2</var> is one of the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of
<var>T1</var>, then <var>T2</var> is also in the transitive membership
of <var>U</var>.</span></p><p>The <a href="#dt-transitivemembership" class="termref" shape="rect"><span class="arrow">&#183;</span>transitive membership<span class="arrow">&#183;</span></a>
of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> <span class="rfc2119">must not</span> contain the <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> itself, nor
any datatype <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> or <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> from the <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>.
</p><p><span class="termdef"><a name="dt-basicmember" id="dt-basicmember" title="" shape="rect">[Definition:]&#160;&#160;</a>Those members of the <a href="#dt-transitivemembership" class="termref" shape="rect"><span class="arrow">&#183;</span>transitive membership<span class="arrow">&#183;</span></a>
of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatype <var>U</var> which are themselves not <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
datatypes
are the <b>basic members</b> of <var>U</var>.</span></p><p><span class="termdef"><a name="dt-interveningunion" id="dt-interveningunion" title="" shape="rect">[Definition:]&#160;&#160;</a>If a datatype <var>M</var> is in the
<a href="#dt-transitivemembership" class="termref" shape="rect"><span class="arrow">&#183;</span>transitive membership<span class="arrow">&#183;</span></a> of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
datatype <var>U</var>, but not one of <var>U</var>'s <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a>,
then a sequence of one or more <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatypes necessarily exists,
such that the first is one of the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of <var>U</var>, each
is one of the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of its predecessor in the sequence, and
<var>M</var> is one of the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of the last in the sequence.
The <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatypes in this sequence are said to
<b>intervene</b> between <var>M</var> and <var>U</var>. When
<var>U</var> and <var>M</var> are given by the context, the datatypes
in the sequence are referred to as the <b>intervening unions</b>.
When <var>M</var> is one of the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of <var>U</var>,
the set of <b>intervening unions</b> is the empty set.
</span>
</p><p>
<span class="termdef"><a name="dt-active-member" id="dt-active-member" title="" shape="rect">[Definition:]&#160;&#160;</a>In a valid
instance of any <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, the first of its members in order which
accepts the instance as valid is the <b>active member
type</b>.</span>
<span class="termdef"><a name="dt-active-basic-member" id="dt-active-basic-member" title="" shape="rect">[Definition:]&#160;&#160;</a>If the <a href="#dt-active-member" class="termref" shape="rect"><span class="arrow">&#183;</span>active member type<span class="arrow">&#183;</span></a> is
itself a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, one of <em>its</em> members will be
<em>its</em> <a href="#dt-active-member" class="termref" shape="rect"><span class="arrow">&#183;</span>active member type<span class="arrow">&#183;</span></a>, and so on, until
finally a <a href="#dt-basicmember" class="termref" shape="rect"><span class="arrow">&#183;</span>basic (non-union)
member<span class="arrow">&#183;</span></a> is reached. That <a href="#dt-basicmember" class="termref" shape="rect"><span class="arrow">&#183;</span>basic member<span class="arrow">&#183;</span></a> is
the <b>active basic member</b> of the union.</span>
</p><p>The order in which the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> are specified in the
definition (that is, in the case of
datatypes defined in a schema document, the order of the
&lt;simpleType&gt; children of the &lt;union&gt; element, or the order
of the <a href="#QName" shape="rect">QName</a>s in the <code>memberTypes</code> attribute) is
significant. During validation, an element or attribute's value is
validated against the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> in the order in which they appear
in the definition until a match is found.&#160; As noted above,
the evaluation order can be overridden with the use of
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#xsi_type" shape="rect">xsi:type</a>.</p><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">For example, given the definition below, the first instance of the &lt;size&gt; element
validates correctly as an <a href="#integer" shape="rect">integer (&#167;3.4.13)</a>, the second and third as
<a href="#string" shape="rect">string (&#167;3.3.1)</a>.</div></div><div class="exampleInner">
<pre xml:space="preserve">
&lt;xsd:element name='size'&gt;
&lt;xsd:simpleType&gt;
&lt;xsd:union&gt;
&lt;xsd:simpleType&gt;
&lt;xsd:restriction base='integer'/&gt;
&lt;/xsd:simpleType&gt;
&lt;xsd:simpleType&gt;
&lt;xsd:restriction base='string'/&gt;
&lt;/xsd:simpleType&gt;
&lt;/xsd:union&gt;
&lt;/xsd:simpleType&gt;
&lt;/xsd:element&gt;
</pre></div><div class="exampleInner">
<pre xml:space="preserve">
&lt;size&gt;1&lt;/size&gt;
&lt;size&gt;large&lt;/size&gt;
&lt;size xsi:type='xsd:string'&gt;1&lt;/size&gt;
</pre></div></div><p>The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> of
a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatype maps each value onto the
<a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> of that value obtained
using the <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> of the first
<a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member type<span class="arrow">&#183;</span></a> in whose value space it lies.</p><div class="block">
When a datatype is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> by <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restricting<span class="arrow">&#183;</span></a> a
<a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatype, the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> apply:
<ul><li><div class="p"><a href="#dt-enumeration" class="termref" shape="rect"><span class="arrow">&#183;</span>enumeration<span class="arrow">&#183;</span></a></div></li><li><div class="p"><a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a></div></li><li><div class="p"><a href="#dt-assertions" class="termref" shape="rect"><span class="arrow">&#183;</span>assertions<span class="arrow">&#183;</span></a></div></li></ul>
</div></div></div><div class="div3">
<h4><a name="primitive-vs-derived" id="primitive-vs-derived" shape="rect"></a>2.4.2 Special vs. Primitive vs.
Ordinary
Datatypes</h4><p>Next, we distinguish <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a>,
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>, and <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
(or <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>) datatypes.&#160;
Each
datatype defined by or in accordance
with this specification falls
into exactly one of these
categories.</p><ul><li><div class="p"><span class="termdef"><a name="dt-special" id="dt-special" title="" shape="rect">[Definition:]&#160;&#160;</a>The <b>special</b>
datatypes are <a href="#anySimpleType" shape="rect">anySimpleType</a> and
<a href="#anyAtomicType" shape="rect">anyAtomicType</a>.</span> They are special by virtue of their
position in the type hierarchy.</div></li><li><div class="p"><span class="termdef"><a name="dt-primitive" id="dt-primitive" title="" shape="rect">[Definition:]&#160;&#160;</a><b>Primitive</b>
datatypes are those
datatypes that are not
<a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a> and are
not defined in terms of other datatypes;
they exist <em>ab initio</em>.</span>
All <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes have
<a href="#anyAtomicType" shape="rect">anyAtomicType</a> as their
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>, but their <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value<span class="arrow">&#183;</span></a>
and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>
must be given in prose; they cannot be described as
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restrictions<span class="arrow">&#183;</span></a> of
<a href="#anyAtomicType" shape="rect">anyAtomicType</a> by the application of particular
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>.</div><div class="note"><div class="p"><b>Note:</b> As normatively specified elsewhere,
conforming processors <span class="rfc2119">must</span> support all the
primitive datatypes defined in this specification; it is
<a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether other primitive datatypes are
supported.</div><div class="p">Processors <span class="rfc2119">may</span>, for example,
support the floating-point decimal datatype specified in
<a href="#pd-note" shape="rect">[Precision Decimal]</a>.
</div></div></li><li><div class="p"><span class="termdef"><a name="dt-ordinary" id="dt-ordinary" title="" shape="rect">[Definition:]&#160;&#160;</a><b>Ordinary</b>
datatypes are all datatypes other than the <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a>
and <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes.</span>&#160;
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>Ordinary<span class="arrow">&#183;</span></a> datatypes
can be understood fully in terms of their <a href="#std" class="compref" shape="rect">Simple Type Definition</a> and
the properties of the datatypes from which they are <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>.</div></li></ul><p>For example, in this specification, <a href="#float" shape="rect">float</a> is a
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatype based on
a well-defined mathematical concept
and
not
defined in terms of other datatypes, while
<a href="#integer" shape="rect">integer</a> is <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>
from the more general datatype <a href="#decimal" shape="rect">decimal</a>.</p><div class="div4">
<h5><a name="restriction" id="restriction" shape="rect"></a>2.4.2.1 Facet-based Restriction</h5><p><span class="termdef"><a name="dt-fb-restriction" id="dt-fb-restriction" title="" shape="rect">[Definition:]&#160;&#160;</a>A
datatype is defined by <b>facet-based restriction</b> of another datatype
(its <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>),
when values for zero or more <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> are specified
that serve to constrain its <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> and/or its
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> to a subset of those of the
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.</span>
The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of a <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a>
<span class="rfc2119">must</span> be a <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> or <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatype.</p></div><div class="div4">
<h5><a name="list" id="list" shape="rect"></a>2.4.2.2 Construction by List</h5><p>A <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype can be <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>
from another datatype (its <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a>) by creating
a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> that consists of
finite-length sequences
of zero or more values of its <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a>.
Datatypes so <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>
have <a href="#anySimpleType" shape="rect">anySimpleType</a> as their <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
Note that since the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of any <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>
datatype are necessarily subsets of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of
<a href="#anySimpleType" shape="rect">anySimpleType</a>, any datatype <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> as a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> is a
<a href="#dt-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restriction<span class="arrow">&#183;</span></a> of its base type.
</p></div><div class="div4">
<h5><a name="union" id="union" shape="rect"></a>2.4.2.3 Construction by Union</h5><p>One datatype can be <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> from one or more
datatypes
by
unioning
their <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a>
and, consequently, their
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a> and
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>.&#160;
Datatypes so <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>
also have <a href="#anySimpleType" shape="rect">anySimpleType</a> as their <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
Note that since the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of any <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
datatype are necessarily subsets of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of
<a href="#anySimpleType" shape="rect">anySimpleType</a>, any datatype <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> as a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> is a
<a href="#dt-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restriction<span class="arrow">&#183;</span></a> of its base type.
</p></div></div><div class="div3">
<h4><a name="derivation" id="derivation" shape="rect"></a>2.4.3 Definition, Derivation, Restriction, and Construction</h4><p>Definition, derivation, restriction, and construction
are conceptually distinct, although in practice
they are frequently performed by the same mechanisms.</p><p>By 'definition' is meant the explicit
identification of the relevant properties of a datatype,
in particular its
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>,
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>, and
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>.
</p><p>The properties of the <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a> and the
standard
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes are defined by this
specification. A <a href="#std" class="compref" shape="rect">Simple Type Definition</a> is present for each of these
datatypes in every valid schema; it serves as a representation of the
datatype, but by itself it does not capture all the relevant
information and does not suffice (without knowledge
of this specification) to <em>define</em> the datatype.</p><div class="note"><div class="p"><b>Note:</b> The properties of any <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>
datatypes are given not here but in the documentation for
the implementation in question.
Alternatively, a primitive datatype
not specified in this document can be specified in a document
of its own not tied to a particular implementation;
<a href="#pd-note" shape="rect">[Precision Decimal]</a> is an example of such a document.
</div></div><p>For all other datatypes, a <a href="#std" class="compref" shape="rect">Simple Type Definition</a> does suffice.
The properties of an <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatype can be inferred
from the datatype's <a href="#std" class="compref" shape="rect">Simple Type Definition</a> and the properties of
the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>, <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a>
if any, and <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> if any.
All <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatypes can be defined in this way.</p><p>By 'derivation' is meant the relation of
a datatype to its <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>, or to the
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of its <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>,
and so on.</p><p><span class="termdef"><a name="dt-basetype" id="dt-basetype" title="" shape="rect">[Definition:]&#160;&#160;</a>Every datatype
other than <a href="#anySimpleType" shape="rect">anySimpleType</a>
is associated with another datatype, its <b>base type</b>.
<b>Base types</b> can be <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a>,
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>, or
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>.
</span>
</p><p><span class="termdef"><a name="dt-immediately-derived" id="dt-immediately-derived" title="" shape="rect">[Definition:]&#160;&#160;</a>A datatype
<var>T</var> is <b>immediately derived</b> from another datatype
<var>X</var> if and only if <var>X</var> is the
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <var>T</var>.</span>
</p><div class="note"><div class="p"><b>Note:</b> The above does not preclude the <a href="#std" class="compref" shape="rect">Simple Type Definition</a>
for <a href="#anySimpleType" shape="rect">anySimpleType</a> from having a value for
its <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.&#160;
(It does, and its value is
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#any-type-itself" shape="rect">anyType</a>.)</div></div><div class="p">
More generally,
<div class="termdef"><a name="dt-derived" id="dt-derived" title="" shape="rect">[Definition:]&#160;&#160;</a>A datatype <var>R</var>
is <b>derived</b> from another
datatype <var>B</var> if and only if one of the following is true:
<ul><li><div class="p"><var>B</var> is the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>
of <var>R</var>.
</div></li><li><div class="p">There is some datatype <var>X</var>
such that <var>X</var> is the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>
of <var>R</var>, and <var>X</var> is derived from
<var>B</var>.</div></li></ul>
</div>
</div><p>A datatype <span class="rfc2119">must not</span> be
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from itself. That is, the
base type relation must be acyclic.</p><p>It is a consequence of the above
that every datatype other than <a href="#anySimpleType" shape="rect">anySimpleType</a> is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from <a href="#anySimpleType" shape="rect">anySimpleType</a>.</p><p>Since each datatype has exactly one <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>,
and every datatype other
than <a href="#anySimpleType" shape="rect">anySimpleType</a>
is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> directly or
indirectly from <a href="#anySimpleType" shape="rect">anySimpleType</a>, it follows that
the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> relation arranges all
simple types into a tree structure, which is conventionally
referred to as the <em>derivation hierarchy</em>.</p><p>By 'restriction' is meant the definition
of a datatype whose <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> are
subsets of those of its <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.</p><div class="block">Formally,
<span class="termdef"><a name="dt-restriction" id="dt-restriction" title="" shape="rect">[Definition:]&#160;&#160;</a>A datatype <var>R</var>
is a <b>restriction</b> of another
datatype <var>B</var> when</span>
<ul><li><div class="p">the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <var>R</var> is a subset of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
of <var>B</var>, and
</div></li><li><div class="p">the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <var>R</var> is a subset of the
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <var>B</var>.
</div></li></ul>
</div><p>
Note that all three forms of datatype <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>construction<span class="arrow">&#183;</span></a> produce
<a href="#dt-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restrictions<span class="arrow">&#183;</span></a> of the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>:
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a> does so by means of
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>,
while <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>construction<span class="arrow">&#183;</span></a> by <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> or <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> does so because those
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructions<span class="arrow">&#183;</span></a> take
<a href="#anySimpleType" shape="rect">anySimpleType</a> as the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>. It follows that all
datatypes are <a href="#dt-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restrictions<span class="arrow">&#183;</span></a>
of <a href="#anySimpleType" shape="rect">anySimpleType</a>.
This specification provides no means by which a datatype may be
defined so as to have a larger <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> or <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
than its <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
</p><p></p><p>By 'construction' is meant the creation of a
datatype by defining it in terms of another.</p><p>
<span class="termdef"><a name="dt-constructed" id="dt-constructed" title="" shape="rect">[Definition:]&#160;&#160;</a>All
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatypes are defined in terms of, or
<b>constructed</b> from, other datatypes, either by
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restricting<span class="arrow">&#183;</span></a> the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> or <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>
of a <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> using zero or more
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>
or by specifying the new datatype as a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> of items of some
<a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a>,
or by defining it as a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> of some specified
sequence of <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a>.</span>
These three forms of <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>construction<span class="arrow">&#183;</span></a>
are often called "<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a>",
"<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>construction<span class="arrow">&#183;</span></a>
by <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>", and "<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>construction<span class="arrow">&#183;</span></a> by
<a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>", respectively.
Datatypes so constructed may be understood fully (for
purposes of a type system) in terms of (a) the properties
of the datatype(s) from which they are constructed, and
(b) their <a href="#std" class="compref" shape="rect">Simple Type Definition</a>. This distinguishes
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
datatypes
from the <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a> and
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes, which can be understood
only in the light of documentation (namely, their descriptions
elsewhere in this specification,
or, for <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitives<span class="arrow">&#183;</span></a>, in the appropriate
implementation-specific documentation).
All <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
datatypes are <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>, and all
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> datatypes are
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>.
</p></div><div class="div3">
<h4><a name="built-in-vs-user-derived" id="built-in-vs-user-derived" shape="rect"></a>2.4.4 Built-in vs. User-Defined Datatypes</h4><ul><li><div class="p">
<span class="termdef"><a name="dt-built-in" id="dt-built-in" title="" shape="rect">[Definition:]&#160;&#160;</a><b>Built-in</b>
datatypes are those which are defined in this
specification; they can
be
<a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a>,
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>, or
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatypes
.
</span>
</div></li><li><div class="p">
<span class="termdef"><a name="dt-user-defined" id="dt-user-defined" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>User-defined</b> datatypes are those
datatypes that are defined by individual schema designers.
</span>
</div></li></ul><p>The <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatypes are intended to be
available automatically whenever this specification is implemented or
used, whether by itself or embedded in a host language. In the
language defined by <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>,
the <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatypes are automatically
included in every valid schema. Other host languages <span class="rfc2119">should</span> specify
that all of the datatypes decribed here as built-ins are automatically
available; they <span class="rfc2119">may</span> specify that additional datatypes are also made
available automatically.</p><div class="note"><div class="p"><b>Note:</b> <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>Implementation-defined<span class="arrow">&#183;</span></a> datatypes, whether <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> or <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>,
may sometimes
be included automatically in any schemas processed
by that implementation; nevertheless, they are not built in
to <em>every</em> schema, and are thus not included
in the term 'built-in', as that term is
used in this specification.
</div></div><p>The mechanism for making <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatypes available for use is not defined in this specification; if
<a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a> datatypes are to be available, some such mechanism
<span class="rfc2119">must</span> be specified by the host language.</p><p><span class="termdef"><a name="dt-unknown-dt" id="dt-unknown-dt" title="" shape="rect">[Definition:]&#160;&#160;</a>A
datatype which is not available for use is said to be
<b>unknown</b>.</span> </p><div class="note"><div class="p"><b>Note:</b> From the schema author's perspective, a reference to
a datatype which proves to be <a href="#dt-unknown-dt" class="termref" shape="rect"><span class="arrow">&#183;</span>unknown<span class="arrow">&#183;</span></a> might reflect
any of the following causes, or others:
<div class="constraintlist"><div class="clnumber">1<a id="unkown.type" name="unkown.type" shape="rect"> </a><span class="p">An error has been made in giving the name of the datatype.</span></div>
<div class="clnumber">2<a id="unkown.sdoc" name="unkown.sdoc" shape="rect"> </a><span class="p">The datatype is a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a> datatype which has not been made
available using the means defined by the host language (e.g.
because the appropriate schema document has not been
consulted).</span></div>
<div class="clnumber">3<a id="unkown.id-primitive" name="unkown.id-primitive" shape="rect"> </a><span class="p">The datatype is an <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a>
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatype not supported by the implementation being
used.</span></div>
<div class="clnumber">4<a id="unkown.id-derived" name="unkown.id-derived" shape="rect"> </a><span class="p">The datatype is an <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
datatype which is made automatically available by some
implementations, but not by the implementation being
used.</span></div>
<div class="clnumber">5<a id="unkown.contaminated" name="unkown.contaminated" shape="rect"> </a><span class="p">The datatype is a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a> <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatype
whose base type is <a href="#dt-unknown-dt" class="termref" shape="rect"><span class="arrow">&#183;</span>unknown<span class="arrow">&#183;</span></a></span></div>
</div>
From the point of view of the implementation, these cases
are likely to be indistinguishable.
</div></div><div class="note"><div class="p"><b>Note:</b> In the terminology of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>,
the datatypes here called <a href="#dt-unknown-dt" class="termref" shape="rect"><span class="arrow">&#183;</span>unknown<span class="arrow">&#183;</span></a> are referred to as
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-null" shape="rect">absent</a>.
</div></div><p>
Conceptually there is no difference between the <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
<a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatypes included in this specification and the <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatypes which will be created by individual schema designers.
The <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> datatypes
are those which are believed to be so common that if they were not
defined in this specification many schema designers would end up
reinventing them.&#160; Furthermore, including these
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> datatypes in this specification serves to
demonstrate the mechanics and utility of the datatype generation
facilities of this specification.
</p></div></div></div><div class="div1">
<h2><a name="built-in-datatypes" id="built-in-datatypes" shape="rect"></a>3 Built-in Datatypes and Their Definitions</h2><div class="image-plus-caption"><object data="type-hierarchy-201104.svg" width="810" height="1060" standby="Loading Built-in Datatype Hierarchy ..." title="Built-in Datatype Hierarchy" type="image/svg+xml"><img src="type-hierarchy-201104.png" width="810" height="1060" alt="Built-in Datatype Hierarchy diagram" longdesc="type-hierarchy-201104.longdesc.html" usemap="#built-in-datatype-hierarchy-image-map" /></object><p class="image-caption">Diagram showing the derivation relations in the built-in type hierarchy.
(A <a href="type-hierarchy-201104.longdesc.html" shape="rect">long description of the diagram</a>
is available separately.)
</p></div><map name="built-in-datatype-hierarchy-image-map" id="built-in-datatype-hierarchy-image-map"><area href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-anyType" coords="10, 10, 210, 30" title="anyType" alt="anyType" shape="rect" />
<area href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#Complex_Type_Definitions" coords="40, 40, 240, 60" title="all complex types" alt="all complex types" shape="rect" />
<area href="#anySimpleType" coords="40, 70, 240, 90" title="anySimpleType" alt="anySimpleType" shape="rect" />
<area href="#anyAtomicType" coords="70, 100, 270, 120" title="anyAtomicType" alt="anyAtomicType" shape="rect" />
<area href="#anyURI" coords="100, 130, 300, 150" title="anyURI" alt="anyURI" shape="rect" />
<area href="#base64Binary" coords="100, 160, 300, 180" title="base64Binary" alt="base64Binary" shape="rect" />
<area href="#boolean" coords="100, 190, 300, 210" title="boolean" alt="boolean" shape="rect" />
<area href="#date" coords="100, 220, 300, 240" title="date" alt="date" shape="rect" />
<area href="#dateTime" coords="100, 250, 300, 270" title="dateTime" alt="dateTime" shape="rect" />
<area href="#dateTimeStamp" coords="130, 280, 330, 300" title="dateTimeStamp" alt="dateTimeStamp" shape="rect" />
<area href="#decimal" coords="100, 310, 300, 330" title="decimal" alt="decimal" shape="rect" />
<area href="#integer" coords="350, 340, 550, 360" title="integer" alt="integer" shape="rect" />
<area href="#long" coords="380, 370, 580, 390" title="long" alt="long" shape="rect" />
<area href="#int" coords="410, 400, 610, 420" title="int" alt="int" shape="rect" />
<area href="#short" coords="440, 430, 640, 450" title="short" alt="short" shape="rect" />
<area href="#byte" coords="470, 460, 670, 480" title="byte" alt="byte" shape="rect" />
<area href="#nonNegativeInteger" coords="380, 490, 580, 510" title="nonNegativeInteger" alt="nonNegativeInteger" shape="rect" />
<area href="#positiveInteger" coords="410, 520, 610, 540" title="positiveInteger" alt="positiveInteger" shape="rect" />
<area href="#unsignedLong" coords="410, 550, 610, 570" title="unsignedLong" alt="unsignedLong" shape="rect" />
<area href="#unsignedInt" coords="440, 580, 640, 600" title="unsignedInt" alt="unsignedInt" shape="rect" />
<area href="#unsignedShort" coords="470, 610, 670, 630" title="unsignedShort" alt="unsignedShort" shape="rect" />
<area href="#unsignedByte" coords="500, 640, 700, 660" title="unsignedByte" alt="unsignedByte" shape="rect" />
<area href="#nonPositiveInteger" coords="380, 670, 580, 690" title="nonPositiveInteger" alt="nonPositiveInteger" shape="rect" />
<area href="#negativeInteger" coords="410, 700, 610, 720" title="negativeInteger" alt="negativeInteger" shape="rect" />
<area href="#double" coords="100, 370, 300, 390" title="double" alt="double" shape="rect" />
<area href="#duration" coords="100, 400, 300, 420" title="duration" alt="duration" shape="rect" />
<area href="#dayTimeDuration" coords="130, 430, 330, 450" title="dayTimeDuration" alt="dayTimeDuration" shape="rect" />
<area href="#yearMonthDuration" coords="130, 460, 330, 480" title="yearMonthDuration" alt="yearMonthDuration" shape="rect" />
<area href="#float" coords="100, 490, 300, 510" title="float" alt="float" shape="rect" />
<area href="#gDay" coords="100, 520, 300, 540" title="gDay" alt="gDay" shape="rect" />
<area href="#gMonth" coords="100, 550, 300, 570" title="gMonth" alt="gMonth" shape="rect" />
<area href="#gMonthDay" coords="100, 580, 300, 600" title="gMonthDay" alt="gMonthDay" shape="rect" />
<area href="#gYear" coords="100, 610, 300, 630" title="gYear" alt="gYear" shape="rect" />
<area href="#gYearMonth" coords="100, 640, 300, 660" title="gYearMonth" alt="gYearMonth" shape="rect" />
<area href="#hexBinary" coords="100, 670, 300, 690" title="hexBinary" alt="hexBinary" shape="rect" />
<area href="#NOTATION" coords="100, 700, 300, 720" title="NOTATION" alt="NOTATION" shape="rect" />
<area href="#QName" coords="100, 730, 300, 750" title="QName" alt="QName" shape="rect" />
<area href="#string" coords="100, 760, 300, 780" title="string" alt="string" shape="rect" />
<area href="#normalizedString" coords="350, 790, 550, 810" title="normalizedString" alt="normalizedString" shape="rect" />
<area href="#token" coords="380, 820, 580, 840" title="token" alt="token" shape="rect" />
<area href="#language" coords="410, 850, 610, 870" title="language" alt="language" shape="rect" />
<area href="#Name" coords="410, 880, 610, 900" title="Name" alt="Name" shape="rect" />
<area href="#NCName" coords="440, 910, 640, 930" title="NCName" alt="NCName" shape="rect" />
<area href="#ENTITY" coords="470, 940, 670, 960" title="ENTITY" alt="ENTITY" shape="rect" />
<area href="#ID" coords="470, 970, 670, 990" title="ID" alt="ID" shape="rect" />
<area href="#IDREF" coords="470, 1000, 670, 1020" title="IDREF" alt="IDREF" shape="rect" />
<area href="#NMTOKEN" coords="410, 1030, 610, 1050" title="NMTOKEN" alt="NMTOKEN" shape="rect" />
<area href="#time" coords="100, 820, 300, 840" title="time" alt="time" shape="rect" />
<area href="#ENTITIES" coords="70, 850, 270, 870" title="ENTITIES" alt="ENTITIES" shape="rect" />
<area href="#IDREFS" coords="70, 880, 270, 900" title="IDREFS" alt="IDREFS" shape="rect" />
<area href="#NMTOKENS" coords="70, 910, 270, 930" title="NMTOKENS" alt="NMTOKENS" shape="rect" />
</map><div class="block">Each built-in datatype defined
in this specification can be uniquely addressed via a
URI Reference constructed as follows:
<ol class="enumar"><li><div class="p">the base URI is the URI of the XML Schema namespace</div></li><li><div class="p">the fragment identifier is the name of the datatype</div></li></ol>
</div><div class="block">For example, to address the <a href="#int" shape="rect">int</a> datatype, the URI is:
<ul><li><div class="p"><code>http://www.w3.org/2001/XMLSchema#int</code></div></li></ul>
</div><div class="block">Additionally, each facet definition element can be uniquely
addressed via a URI constructed as follows:
<ol class="enumar"><li><div class="p">the base URI is the URI of the XML Schema namespace</div></li><li><div class="p">the fragment identifier is the name of the facet</div></li></ol>
</div><div class="block">For example, to address the maxInclusive facet, the URI is:
<ul><li><div class="p"><code>http://www.w3.org/2001/XMLSchema#maxInclusive</code></div></li></ul>
</div><div class="block">Additionally, each facet usage in a built-in
<a href="#std" class="compref" shape="rect">Simple Type Definition</a>
can be uniquely addressed via a URI constructed as follows:
<ol class="enumar"><li><div class="p">the base URI is the URI of the XML Schema namespace</div></li><li><div class="p">the fragment identifier is the name of the
<a href="#std" class="compref" shape="rect">Simple Type Definition</a>, followed
by a period ('<code>.</code>') followed by the name of the facet</div></li></ol>
</div><div class="block">For example, to address the usage of the maxInclusive facet in
the definition of int, the URI is:
<ul><li><div class="p"><code>http://www.w3.org/2001/XMLSchema#int.maxInclusive</code></div></li></ul>
</div><div class="div2">
<h3><span class="nav"> <a href="#special-datatypes" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="namespaces" id="namespaces" shape="rect"></a>3.1 Namespace considerations</h3><p>
The <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatypes defined by this specification
are designed to be used with the XML Schema definition language as well as other
XML specifications.
To facilitate usage within the XML Schema definition language, the <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatypes in this specification have the namespace name:
</p><ul><li><div class="p">http://www.w3.org/2001/XMLSchema</div></li></ul><p>
To facilitate usage in specifications other than the XML Schema definition language,
such as those that do not want to know anything about aspects of the
XML Schema definition language other than the datatypes, each
<a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is also defined in the namespace whose URI is:
</p><ul><li><div class="p">http://www.w3.org/2001/XMLSchema-datatypes</div></li></ul><p>
</p><p>
Each <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a> datatype may also be associated with a
target
namespace.&#160; If it is constructed
from a schema document, then its namespace is typically the
target namespace of that schema document. (See
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-schema" shape="rect">XML Representation of
Schemas</a> in <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.)
</p></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#namespaces" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#built-in-primitive-datatypes" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="special-datatypes" id="special-datatypes" shape="rect"></a>3.2 Special Built-in Datatypes</h3><div class="localToc">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.2.1 <a href="#anySimpleType" shape="rect">anySimpleType</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.2.1.1 <a href="#sec-ast-vs" shape="rect">Value space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.2.1.2 <a href="#sec-ast-lex" shape="rect">Lexical mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.2.1.3 <a href="#sec-ast-f" shape="rect">Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.2.2 <a href="#anyAtomicType" shape="rect">anyAtomicType</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.2.2.1 <a href="#sec-aat-vs" shape="rect">Value space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.2.2.2 <a href="#sec-aat-lex" shape="rect">Lexical mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.2.2.3 <a href="#sec-aat-f" shape="rect">Facets</a><br clear="none" />
</div><p>The two datatypes at the root of the hierarchy of simple
types are <a href="#anySimpleType" shape="rect">anySimpleType</a> and <a href="#anyAtomicType" shape="rect">anyAtomicType</a>.</p><div class="div3">
<h4><a name="anySimpleType" id="anySimpleType" shape="rect"></a>3.2.1 anySimpleType</h4><p><span class="termdef"><a name="dt-anySimpleType" id="dt-anySimpleType" title="" shape="rect">[Definition:]&#160;&#160;</a>
The definition of <b>anySimpleType</b> is a special
<a href="#dt-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restriction<span class="arrow">&#183;</span></a> of <b><i>anyType</i></b>.&#160;
The
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <b>anySimpleType</b>
is the set of all sequences of Unicode
characters,
and its <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> includes all <a href="#dt-atomic-value" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic values<span class="arrow">&#183;</span></a>
and all finite-length lists of
zero or more
<a href="#dt-atomic-value" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic values<span class="arrow">&#183;</span></a>.</span></p><p>For further details of <a href="#anySimpleType" shape="rect">anySimpleType</a>
and its representation as a <a href="#std" class="compref" shape="rect">Simple Type Definition</a>, see
<a href="#builtin-stds" shape="rect">Built-in Simple Type Definitions (&#167;4.1.6)</a>.</p><div class="div4">
<h5><a name="sec-ast-vs" id="sec-ast-vs" shape="rect"></a>3.2.1.1 Value space</h5><p>The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <a href="#anySimpleType" shape="rect">anySimpleType</a>
is the set of all <a href="#dt-atomic-value" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic values<span class="arrow">&#183;</span></a> and of all finite-length
lists of zero or more
<a href="#dt-atomic-value" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic values<span class="arrow">&#183;</span></a>.</p><div class="note"><div class="p"><b>Note:</b> It is a consequence of this definition, together with the
definition of the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> in the next section, that some
values of this datatype have no <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> using the
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> defined by this specification. That is, the
"potential" <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> and the "effable"
or "nameable" <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> diverge for this datatype.
As far as this specification is concerned, there is no operational
difference between the potential and effable <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a> and the
distinction is of mostly formal interest. Since some host languages
for the type system defined here may allow means of construction
values other than mapping from a <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>, the
difference may have practical importance in some contexts. In those
contexts, the term <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> should unless otherwise qualified be
taken to mean the potential <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.
</div></div></div><div class="div4">
<h5><a name="sec-ast-lex" id="sec-ast-lex" shape="rect"></a>3.2.1.2 Lexical mapping</h5><p>The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#anySimpleType" shape="rect">anySimpleType</a> is the set of
all finite-length sequences of zero or more
<a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">character</a>s (as
defined in <a href="#XML" shape="rect">[XML]</a>) that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the
<a href="http://www.w3.org/TR/xml11/#NT-Char" shape="rect">Char</a> production from
<a href="#XML" shape="rect">[XML]</a>. This is equivalent to the union of the
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a> of all
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> and all possible <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatypes.
</p><p>It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether an
implementation of this specification supports the
<a href="http://www.w3.org/TR/xml11/#NT-Char" shape="rect">Char</a> production from
<a href="#XML" shape="rect">[XML]</a>, or that from
<a href="#XML1.0" shape="rect">[XML 1.0]</a>, or both. See
<a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</p><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> of <a href="#anySimpleType" shape="rect">anySimpleType</a> is the union
of the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> of
all <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes and all list datatypes.
It will be noted that this mapping is not a function: a given
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> may map to one value or to several values of different
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes, and it may be indeterminate which value is to
be preferred in a particular context. When the datatypes defined here
are used in the context of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>, the
<code>xsi:type</code> attribute defined by that specification in section
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#xsi_type" shape="rect">xsi:type</a> can be used
to indicate which value a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> which is the content of an element
should map to. In other contexts, other rules (such as type coercion
rules) may be employed to determine which value is to be used.</p></div><div class="div4">
<h5><a name="sec-ast-f" id="sec-ast-f" shape="rect"></a>3.2.1.3 Facets</h5><p>When a new datatype is defined
by <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a>,
<a href="#anySimpleType" shape="rect">anySimpleType</a> <span class="rfc2119">must not</span> be used
as the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
So no
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> are
directly applicable to <a href="#anySimpleType" shape="rect">anySimpleType</a>.
</p></div></div><div class="div3">
<h4><a name="anyAtomicType" id="anyAtomicType" shape="rect"></a>3.2.2 anyAtomicType</h4><p><span class="termdef"><a name="dt-anyAtomicType" id="dt-anyAtomicType" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>anyAtomicType</b>
is a special <a href="#dt-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restriction<span class="arrow">&#183;</span></a> of <a href="#anySimpleType" shape="rect">anySimpleType</a>.
The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value<span class="arrow">&#183;</span></a>
and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>
of <b>anyAtomicType</b> are the unions of the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value<span class="arrow">&#183;</span></a>
and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>
of all the <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes, and
<b>anyAtomicType</b> is their <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
</span>
</p><p>For further details of <a href="#anyAtomicType" shape="rect">anyAtomicType</a>
and its representation as a <a href="#std" class="compref" shape="rect">Simple Type Definition</a>, see
<a href="#builtin-stds" shape="rect">Built-in Simple Type Definitions (&#167;4.1.6)</a>.</p><div class="div4">
<h5><a name="sec-aat-vs" id="sec-aat-vs" shape="rect"></a>3.2.2.1 Value space</h5><p>The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <a href="#anyAtomicType" shape="rect">anyAtomicType</a> is the union of the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a> of all the
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes defined here
or supplied as <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitives<span class="arrow">&#183;</span></a>.</p></div><div class="div4">
<h5><a name="sec-aat-lex" id="sec-aat-lex" shape="rect"></a>3.2.2.2 Lexical mapping</h5><p>The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#anyAtomicType" shape="rect">anyAtomicType</a> is the set of
all finite-length sequences of zero or more
<a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">character</a>s (as
defined in <a href="#XML" shape="rect">[XML]</a>) that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the
<a href="http://www.w3.org/TR/xml11/#NT-Char" shape="rect">Char</a> production from
<a href="#XML" shape="rect">[XML]</a>. This is equivalent to the union of the
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a> of all
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes.
</p><p>It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether an
implementation of this specification supports the <a href="http://www.w3.org/TR/xml11/#NT-Char" shape="rect">Char</a> production from
<a href="#XML" shape="rect">[XML]</a>, or that from
<a href="#XML1.0" shape="rect">[XML 1.0]</a>, or both. See
<a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</p><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> of <a href="#anyAtomicType" shape="rect">anyAtomicType</a> is the union
of the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> of
all <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes.
It will be noted that this mapping is not a function: a given
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> may map to one value or to several values of different
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes, and it may be indeterminate which value is to
be preferred in a particular context. When the datatypes defined here
are used in the context of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>, the
<code>xsi:type</code> attribute defined by that specification in section
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#xsi_type" shape="rect">xsi:type</a> can be used
to indicate which value a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> which is the content of an element
should map to. In other contexts, other rules (such as type coercion
rules) may be employed to determine which value is to be used.</p></div><div class="div4">
<h5><a name="sec-aat-f" id="sec-aat-f" shape="rect"></a>3.2.2.3 Facets</h5><p>When a new datatype is defined
by <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a>,
<a href="#anyAtomicType" shape="rect">anyAtomicType</a> <span class="rfc2119">must not</span> be used
as the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
So no
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> are
directly applicable to <a href="#anyAtomicType" shape="rect">anyAtomicType</a>.
</p></div></div></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#special-datatypes" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#ordinary-built-ins" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="built-in-primitive-datatypes" id="built-in-primitive-datatypes" shape="rect"></a>3.3 Primitive Datatypes</h3><div class="localToc">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.1 <a href="#string" shape="rect">string</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.1.1 <a href="#sec-vs-string" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.1.2 <a href="#string-lexical-mapping" shape="rect">Lexical Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.1.3 <a href="#string-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.1.4 <a href="#string-derived-types" shape="rect">Derived
datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.2 <a href="#boolean" shape="rect">boolean</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.2.1 <a href="#sec-vs-boolean" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.2.2 <a href="#boolean-lexical-mapping" shape="rect">Lexical Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.2.3 <a href="#boolean-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.3 <a href="#decimal" shape="rect">decimal</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.3.1 <a href="#decimal-lexical-representation" shape="rect">Lexical
Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.3.2 <a href="#decimal-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.3.3 <a href="#decimal-derived-types" shape="rect">Datatypes based on decimal</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.4 <a href="#float" shape="rect">float</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.4.1 <a href="#sec-vs-float" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.4.2 <a href="#sec-lex-float" shape="rect">Lexical Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.4.3 <a href="#float-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.5 <a href="#double" shape="rect">double</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.5.1 <a href="#sec-vs-double" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.5.2 <a href="#sec-lex-double" shape="rect">Lexical Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.5.3 <a href="#double-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.6 <a href="#duration" shape="rect">duration</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.6.1 <a href="#sec-vs-duration" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.6.2 <a href="#duration-lexical-space" shape="rect">Lexical Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.6.3 <a href="#duration-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.6.4 <a href="#duration-derived-types" shape="rect">Related Datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.7 <a href="#dateTime" shape="rect">dateTime</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.7.1 <a href="#dateTime-value-space" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.7.2 <a href="#dateTime-lexical-mapping" shape="rect">Lexical Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.7.3 <a href="#dateTime-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.7.4 <a href="#dateTime-derived-types" shape="rect">Related Datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.8 <a href="#time" shape="rect">time</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.8.1 <a href="#time-value-space" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.8.2 <a href="#time-lexical-mapping" shape="rect">Lexical Mappings</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.8.3 <a href="#time-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.9 <a href="#date" shape="rect">date</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.9.1 <a href="#date-value-space" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.9.2 <a href="#date-lexical-mapping" shape="rect">Lexical Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.9.3 <a href="#date-facets" shape="rect">Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.10 <a href="#gYearMonth" shape="rect">gYearMonth</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.10.1 <a href="#gYearMonth-value-space" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.10.2 <a href="#gYearMonth-lexical-repr" shape="rect">Lexical
Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.10.3 <a href="#gYearMonth-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.11 <a href="#gYear" shape="rect">gYear</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.11.1 <a href="#gYear-value-space" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.11.2 <a href="#gYear-lexical-repr" shape="rect">Lexical
Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.11.3 <a href="#gYear-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.12 <a href="#gMonthDay" shape="rect">gMonthDay</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.12.1 <a href="#gMonthDay-value-space" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.12.2 <a href="#gMonthDay-lexical-repr" shape="rect">Lexical
Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.12.3 <a href="#gMonthDay-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.13 <a href="#gDay" shape="rect">gDay</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.13.1 <a href="#sec-vs-gDay" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.13.2 <a href="#gDay-lexical-mapping" shape="rect">Lexical Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.13.3 <a href="#gDay-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.14 <a href="#gMonth" shape="rect">gMonth</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.14.1 <a href="#gMonth-value-space" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.14.2 <a href="#gMonth-lexical-repr" shape="rect">Lexical
Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.14.3 <a href="#gMonth-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.15 <a href="#hexBinary" shape="rect">hexBinary</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.15.1 <a href="#sec-vs-hexbin" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.15.2 <a href="#hexBinary-lexical-representation" shape="rect">Lexical Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.15.3 <a href="#hexBinary-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.16 <a href="#base64Binary" shape="rect">base64Binary</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.16.1 <a href="#sec-vs-b46b" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.16.2 <a href="#sec-lex-b64b" shape="rect">Lexical
Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.16.3 <a href="#base64Binary-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.17 <a href="#anyURI" shape="rect">anyURI</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.17.1 <a href="#anyURI-vs" shape="rect">Value Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.17.2 <a href="#anyURI-lexical-representation" shape="rect">Lexical
Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.17.3 <a href="#anyURI-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.18 <a href="#QName" shape="rect">QName</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.18.1 <a href="#QName-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.19 <a href="#NOTATION" shape="rect">NOTATION</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.3.19.1 <a href="#NOTATION-facets" shape="rect">
Facets</a><br clear="none" />
</div><p>
The <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes defined by this specification
are described below.&#160; For each datatype, the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
is described;
the
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>
is
defined
using
an extended Backus Naur Format grammar
(and in most cases also a regular expression using the
regular expression language of
<a href="#regexs" shape="rect">Regular Expressions (&#167;G)</a>);
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> which apply
to the datatype are listed;
and any datatypes
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>
from this datatype are specified.
</p><p>
Conforming processors <span class="rfc2119">must</span> support
the <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes defined
in this specification; it is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether they
support others. <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>Primitive<span class="arrow">&#183;</span></a> datatypes may be added by revisions to this specification.
</p><div class="note"><div class="p"><b>Note:</b> Processors <span class="rfc2119">may</span>, for example, support the
floating-point decimal datatype specified in
<a href="#pd-note" shape="rect">[Precision Decimal]</a>.</div></div><div class="div3">
<h4><a name="string" id="string" shape="rect"></a>3.3.1 string</h4><p><span class="termdef"><a name="dt-string" id="dt-string" title="" shape="rect">[Definition:]&#160;&#160;</a>The <b>string</b> datatype
represents character strings in XML.
</span></p><div class="note"><div class="p"><b>Note:</b> Many human languages have writing systems that require
child elements for control of aspects such as bidirectional formatting or
ruby annotation (see <a href="#ruby" shape="rect">[Ruby]</a> and Section 8.2.4
<a href="http://www.w3.org/TR/html401/struct/dirlang.html#h-8.2.4" shape="rect">Overriding the
bidirectional algorithm: the BDO element</a> of <a href="#html4" shape="rect">[HTML 4.01]</a>).&#160;
Thus, <a href="#string" shape="rect">string</a>, as a simple type that can contain only
characters but not child elements, is often not suitable for representing text.
In such situations, a complex type that allows mixed content should be considered.
For more information, see Section 5.5
<a href="http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/#textType" shape="rect">Any
Element, Any Attribute</a> of <a href="#schema-primer" shape="rect">[XML Schema Language: Part 0 Primer]</a>.</div></div><div class="div4">
<h5><a name="sec-vs-string" id="sec-vs-string" shape="rect"></a>3.3.1.1 Value Space</h5><p>The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
of <a href="#string" shape="rect">string</a> is the set of finite-length sequences of
zero or more
<a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">character</a>s (as defined in
<a href="#XML" shape="rect">[XML]</a>) that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the
<a href="http://www.w3.org/TR/xml11/#NT-Char" shape="rect">Char</a> production from <a href="#XML" shape="rect">[XML]</a>.
A <a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">character</a> is an atomic unit of
communication; it is not further specified except to note that every
<a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">character</a> has a corresponding
Universal Character Set (UCS) code point, which is an integer.</p><p>It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether an
implementation of this specification supports the <a href="http://www.w3.org/TR/xml11/#NT-Char" shape="rect">Char</a> production from
<a href="#XML" shape="rect">[XML]</a>, or that from
<a href="#XML1.0" shape="rect">[XML 1.0]</a>, or both. See
<a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</p><p>Equality for <a href="#string" shape="rect">string</a> is
identity. No order is prescribed.</p><div class="note"><div class="p"><b>Note:</b> As noted in <a href="#ff-o" class="compref" shape="rect">ordered</a>, the fact that this specification does
not specify an
order relation
for <a href="#dt-string" class="termref" shape="rect"><span class="arrow">&#183;</span>string<span class="arrow">&#183;</span></a>
does not preclude other applications from treating
strings
as being ordered.</div></div></div><div class="div4">
<h5><a name="string-lexical-mapping" id="string-lexical-mapping" shape="rect"></a>3.3.1.2 Lexical Mapping</h5><div class="block">The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#string" shape="rect">string</a> is the set of
finite-length sequences of zero or more
<a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">character</a>s (as defined in
<a href="#XML" shape="rect">[XML]</a>) that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the
<a href="http://www.w3.org/TR/xml11/#NT-Char" shape="rect">Char</a> production from <a href="#XML" shape="rect">[XML]</a>.
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-stringRep" id="nt-stringRep" shape="rect"></a><span class="lhs">[1]
&#160;
<i>stringRep</i></span>&#160;::= <a href="http://www.w3.org/TR/xml11/#NT-Char" shape="rect">Char</a>*&#160; <div class="bnf_comment">/* <i class="com">(as defined in <a href="#XML" shape="rect">[XML]</a>)</i> */</div></div></div>
</div><p>It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether an
implementation of this specification supports the <a href="http://www.w3.org/TR/xml11/#NT-Char" shape="rect">Char</a> production from
<a href="#XML" shape="rect">[XML]</a>, or that from
<a href="#XML1.0" shape="rect">[XML 1.0]</a>, or both. See
<a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</p><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
for <a href="#string" shape="rect">string</a> is <a href="#f-stringLexmap" shape="rect"><i><span class="arrow">&#183;</span>stringLexicalMap<span class="arrow">&#183;</span></i></a>, and
the <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is <a href="#f-stringCanmap" shape="rect"><i><span class="arrow">&#183;</span>stringCanonicalMap<span class="arrow">&#183;</span></i></a>;
each is a subset of the identity function.
</p></div><div class="div4">
<h5><a name="string-facets" id="string-facets" shape="rect"></a>3.3.1.3
Facets</h5><p><span class="normal"><span class="normal">The <a href="#string" shape="rect">string</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-whiteSpace" name="string.whiteSpace" shape="rect" id="string.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>preserve</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#string" shape="rect">string</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#string" shape="rect">string</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="string-derived-types" id="string-derived-types" shape="rect"></a>3.3.1.4 Derived
datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#string" shape="rect">string</a></p><ul><li><a href="#normalizedString" shape="rect">normalizedString</a></li></ul></div></div><div class="div3">
<h4><a name="boolean" id="boolean" shape="rect"></a>3.3.2 boolean</h4><p><span class="termdef"><a name="dt-boolean" id="dt-boolean" title="" shape="rect">[Definition:]&#160;&#160;</a><b>boolean</b>
represents the
values of two-valued logic.</span></p><div class="div4">
<h5><a name="sec-vs-boolean" id="sec-vs-boolean" shape="rect"></a>3.3.2.1 Value Space</h5><p><a href="#boolean" shape="rect">boolean</a> has the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
two-valued logic:&#160; {<b><i>true</i></b>, <b><i>false</i></b>}.</p></div><div class="div4">
<h5><a name="boolean-lexical-mapping" id="boolean-lexical-mapping" shape="rect"></a>3.3.2.2 Lexical Mapping</h5><div class="block"><a href="#boolean" shape="rect">boolean</a>'s lexical space is a set of four <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>:
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-booleanRep" id="nt-booleanRep" shape="rect"></a><span class="lhs">[2]
&#160;
<i>booleanRep</i></span>&#160;::= '<code>true</code>'&#160;| '<code>false</code>'&#160;|
'<code>1</code>'&#160;| '<code>0</code>'</div></div>
</div><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
for <a href="#boolean" shape="rect">boolean</a> is <a href="#f-booleanLexmap" shape="rect"><i><span class="arrow">&#183;</span>booleanLexicalMap<span class="arrow">&#183;</span></i></a>;
the <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is <a href="#f-booleanCanmap" shape="rect"><i><span class="arrow">&#183;</span>booleanCanonicalMap<span class="arrow">&#183;</span></i></a>.
</p></div><div class="div4">
<h5><a name="boolean-facets" id="boolean-facets" shape="rect"></a>3.3.2.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#boolean" shape="rect">boolean</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="boolean.whiteSpace" shape="rect" id="boolean.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#boolean" shape="rect">boolean</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#boolean" shape="rect">boolean</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>finite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="decimal" id="decimal" shape="rect"></a>3.3.3 decimal</h4><p><span class="termdef"><a name="dt-decimal-datatype" id="dt-decimal-datatype" title="" shape="rect">[Definition:]&#160;&#160;</a><b>decimal</b>
represents
a
subset of the real numbers, which
can be represented by
decimal numerals.
The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <b>decimal</b>
is the set of numbers that can be obtained by
dividing
an integer by a non-negative
power of ten, i.e., expressible as
<var>i</var>&#160;/&#160;10<sup><var>n</var></sup>
where <var>i</var> and <var>n</var> are integers
and
<var>n</var>&#160;&#8805;&#160;0.
Precision is not reflected in this value space;
the number 2.0 is not distinct from the number 2.00.
The order relation on <b>decimal</b>
is the order relation on real numbers, restricted
to this subset.</span></p><div class="note"><div class="p"><b>Note:</b> For a decimal datatype whose values do reflect precision, see
<a href="#pd-note" shape="rect">[Precision Decimal]</a>.</div></div><div class="div4">
<h5><a name="decimal-lexical-representation" id="decimal-lexical-representation" shape="rect"></a>3.3.3.1 Lexical
Mapping</h5><p><b>decimal</b>
has
a lexical representation
consisting of a
non-empty finite-length
sequence of
decimal
digits (#x30&#8211;#x39) separated
by a period as a decimal indicator.&#160;
An optional leading sign is allowed.&#160;
If the sign is omitted,
"+"
is assumed.&#160; Leading and trailing zeroes are optional.&#160;
If the fractional part is zero, the period and following zero(es) can
be omitted.
For example:&#160;
'<code>-1.23</code>',
'<code>12678967.543233</code>', '<code>+100000.00</code>',
'<code>210</code>'.
</p><div class="block"><div class="defset">
<div class="defset-head">The <a href="#decimal" shape="rect">decimal</a> Lexical Representation</div>
<div class="prod">
<a name="nt-decimalRep" id="nt-decimalRep" shape="rect"></a><span class="lhs">[3]
&#160;
<i>decimalLexicalRep</i></span>&#160;::= <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a>&#160;| <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a></div></div>
</div><div class="block">The lexical space of decimal is the set of
lexical representations which match the grammar given above, or
(equivalently) the regular expression
<blockquote><blockquote><p>
<code>(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)</code></p></blockquote></blockquote>
</div><p>
The mapping from lexical representations to values is the usual
one for decimal numerals; it is given formally in
<a href="#f-decimalLexmap" shape="rect"><i><span class="arrow">&#183;</span>decimalLexicalMap<span class="arrow">&#183;</span></i></a>.
</p><p>The definition
of the <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> has the
effect of prohibiting certain options from the
<a href="#decimal-lexical-representation" shape="rect">Lexical
Mapping (&#167;3.3.3.1)</a>.&#160;
Specifically,
for integers, the decimal point and fractional part are prohibited.
For other values,
the preceding optional
"+"
sign is prohibited.&#160; The decimal point is required.&#160;
In
all cases, leading and
trailing zeroes are prohibited subject to the following:&#160; there
must be at least one digit to the right and to the left of the decimal
point which may be a
zero.</p><p>
The mapping from values to <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representations<span class="arrow">&#183;</span></a>
is given formally in
<a href="#f-decimalCanmap" shape="rect"><i><span class="arrow">&#183;</span>decimalCanonicalMap<span class="arrow">&#183;</span></i></a>.
</p></div><div class="div4">
<h5><a name="decimal-facets" id="decimal-facets" shape="rect"></a>3.3.3.2
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#decimal" shape="rect">decimal</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="decimal.whiteSpace" shape="rect" id="decimal.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#decimal" shape="rect">decimal</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#decimal" shape="rect">decimal</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="decimal-derived-types" id="decimal-derived-types" shape="rect"></a>3.3.3.3 Datatypes based on decimal</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#decimal" shape="rect">decimal</a></p><ul><li><a href="#integer" shape="rect">integer</a></li></ul></div></div><div class="div3">
<h4><a name="float" id="float" shape="rect"></a>3.3.4 float</h4><p><span class="termdef"><a name="dt-float" id="dt-float" title="" shape="rect">[Definition:]&#160;&#160;</a>The
<b>float</b> datatype
is
patterned after the IEEE
single-precision 32-bit floating point datatype
<a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>.</span>&#160;
Its
value space is a subset of the
rational numbers.&#160; Floating point numbers are often used to
approximate arbitrary real numbers.</p><div class="div4">
<h5><a name="sec-vs-float" id="sec-vs-float" shape="rect"></a>3.3.4.1 Value Space</h5><p>The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <a href="#float" shape="rect">float</a> contains the
non-zero numbers&#160; <var>m</var>&#160;&#215;&#160;2<sup><var>e</var></sup>&#160;,
where <var>m</var> is an integer whose absolute value is less than 2<sup>24</sup>,
and <var>e</var> is an integer between &#8722;149 and 104, inclusive.&#160; In addition to
these values, the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <a href="#float" shape="rect">float</a> also contains
the following <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a>:&#160; <b><i>positiveZero</i></b>,
<b><i>negativeZero</i></b>, <b><i>positiveInfinity</i></b>,
<b><i>negativeInfinity</i></b>, and <b><i>notANumber</i></b>.</p><div class="note"><div class="p"><b>Note:</b> As explained below, the
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>
of the <a href="#float" shape="rect">float</a>
value <b><i>notANumber</i></b> is '<code>NaN</code>'.&#160; Accordingly, in English
text we generally use 'NaN' to refer to that value.&#160; Similarly,
we use 'INF' and '&#8722;INF' to refer to the two
values <b><i>positiveInfinity</i></b> and <b><i>negativeInfinity</i></b>,
and '0' and '&#8722;0' to refer to
<b><i>positiveZero</i></b> and <b><i>negativeZero</i></b>.</div></div><div class="block">Equality and order for <a href="#float" shape="rect">float</a> are defined as follows:
<ul><li><div class="p">Equality is identity, except that&#160; 0&#160;=&#160;&#8722;0&#160; (although
they are not identical) and&#160; NaN&#160;&#8800;&#160;NaN&#160;
(although NaN is of course identical to itself).</div><div class="p">0 and &#8722;0 are thus equivalent
for purposes of enumerations and
identity constraints, as well as for minimum and maximum values.</div></li><li><div class="p">For the basic values, the order relation
on float is the order relation for rational numbers.&#160; INF is greater
than all other non-NaN values; &#8722;INF is less than all other non-NaN
values.&#160; NaN is <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> with any value
in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> including itself.&#160; 0 and &#8722;0
are greater than all the negative numbers and less than all the positive
numbers.</div></li></ul>
</div><div class="note"><div class="p"><b>Note:</b> Any value <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> with the value used for the four
bounding facets (<a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a>, <a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a>,
<a href="#dt-minExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minExclusive<span class="arrow">&#183;</span></a>, and <a href="#dt-maxExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxExclusive<span class="arrow">&#183;</span></a>) will be
excluded from the resulting restricted <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.&#160;
In particular, when NaN is used as a facet value for a bounding facet, since no
<a href="#float" shape="rect">float</a> values are <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>comparable<span class="arrow">&#183;</span></a>
with it, the result is a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> that is empty.&#160;
If any other value is used for a bounding facet,
NaN will be excluded from the resulting restricted <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>;
to add NaN back in requires union with the NaN-only space (which
may be derived using
the
pattern '<code>NaN</code>').</div></div><div class="note"><div class="p"><b>Note:</b> The Schema 1.0 version of this datatype did not differentiate between
0 and &#8722;0 and NaN was equal to itself.&#160; The changes were
made to make the datatype more closely mirror <a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>.</div></div></div><div class="div4">
<h5><a name="sec-lex-float" id="sec-lex-float" shape="rect"></a>3.3.4.2 Lexical Mapping</h5><div class="block">The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#float" shape="rect">float</a> is
the set of all decimal numerals with or without a decimal
point, numerals in scientific (exponential) notation, and
the <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>
'<code>INF</code>', '<code>+INF</code>',
'<code>-INF</code>',
and '<code>NaN</code>'
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-floatRep" id="nt-floatRep" shape="rect"></a><span class="lhs">[4]
&#160;
<i>floatRep</i></span>&#160;::= <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a>&#160;| <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a>&#160;|
<a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a>&#160;| <a href="#nt-numSpecReps" shape="rect"><i>numericalSpecialRep</i></a></div></div>
The <a href="#nt-floatRep" shape="rect"><i>floatRep</i></a> production is equivalent to this regular
expression (after whitespace is
removed from the regular expression):
<blockquote class="shrink"><p><code>(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)([Ee](\+|-)?[0-9]+)?<br clear="none" />
|(\+|-)?INF|NaN</code></p></blockquote>
</div><p>The <a href="#float" shape="rect">float</a> datatype is designed to implement for schema
processing the single-precision floating-point datatype of
<a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>.&#160; That specification does not specify specific
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a>,
but does prescribe requirements on any <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
used.&#160; Any <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
that maps the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> just described onto the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, is a function,
satisfies the requirements of
<a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>, and correctly handles the
mapping of the literals
'<code>INF</code>', '<code>NaN</code>', etc., to the
<a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a>,
satisfies the conformance requirements of this specification.</p><p>Since IEEE allows some variation in rounding of values, processors
conforming to this specification may exhibit some variation in their
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a>.</p><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> <a href="#f-floatLexmap" shape="rect"><i><span class="arrow">&#183;</span>floatLexicalMap<span class="arrow">&#183;</span></i></a> is
provided as an example of a simple algorithm that yields a conformant mapping,
and that provides the most accurate rounding possible&#8212;and is thus useful
for insuring inter-implementation reproducibility and inter-implementation
round-tripping.&#160; The simple rounding
algorithm used in <a href="#f-floatLexmap" shape="rect"><i><span class="arrow">&#183;</span>floatLexicalMap<span class="arrow">&#183;</span></i></a> may be more efficiently
implemented using the algorithms of <a href="#clinger1990" shape="rect">[Clinger, WD (1990)]</a>.</p><div class="note"><div class="p"><b>Note:</b> The Schema 1.0 version of this datatype did not permit rounding
algorithms whose results differed from <a href="#clinger1990" shape="rect">[Clinger, WD (1990)]</a>.</div></div><p>The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> <a href="#f-floatCanmap" shape="rect"><i><span class="arrow">&#183;</span>floatCanonicalMap<span class="arrow">&#183;</span></i></a> is
provided as an example of a mapping that does not produce unnecessarily long
<a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representations<span class="arrow">&#183;</span></a>.&#160;
Other algorithms which do not yield identical results for mapping from float
values to character strings are permitted by <a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>.</p></div><div class="div4">
<h5><a name="float-facets" id="float-facets" shape="rect"></a>3.3.4.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#float" shape="rect">float</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="float.whiteSpace" shape="rect" id="float.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#float" shape="rect">float</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#float" shape="rect">float</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>true</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>finite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="double" id="double" shape="rect"></a>3.3.5 double</h4><p>
<span class="termdef"><a name="dt-double" id="dt-double" title="" shape="rect">[Definition:]&#160;&#160;</a>The <b>double</b>
datatype is
patterned after the
IEEE double-precision 64-bit floating point datatype
<a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>.</span>&#160;
Each floating
point datatype has a value space that is a subset of the
rational numbers.&#160; Floating point numbers are often used to
approximate arbitrary real numbers.</p><div class="note"><div class="p"><b>Note:</b> The only significant differences between float and double are
the three defining constants 53 (vs 24), &#8722;1074 (vs &#8722;149),
and 971 (vs 104).</div></div><div class="div4">
<h5><a name="sec-vs-double" id="sec-vs-double" shape="rect"></a>3.3.5.1 Value Space</h5><p>The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <a href="#double" shape="rect">double</a> contains the
non-zero numbers&#160; <var>m</var>&#160;&#215;&#160;2<sup><var>e</var></sup>&#160;,
where <var>m</var> is an integer whose absolute value is less than 2<sup>53</sup>,
and <var>e</var> is an integer between &#8722;1074 and 971, inclusive.&#160; In addition to
these values, the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <a href="#double" shape="rect">double</a> also contains
the following <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a>:&#160; <b><i>positiveZero</i></b>,
<b><i>negativeZero</i></b>, <b><i>positiveInfinity</i></b>,
<b><i>negativeInfinity</i></b>, and <b><i>notANumber</i></b>.</p><div class="note"><div class="p"><b>Note:</b> As explained below, the
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>
of the <a href="#double" shape="rect">double</a>
value <b><i>notANumber</i></b> is '<code>NaN</code>'.&#160; Accordingly, in English
text we generally use 'NaN' to refer to that value.&#160; Similarly,
we use 'INF' and '&#8722;INF' to refer to the two
values <b><i>positiveInfinity</i></b> and <b><i>negativeInfinity</i></b>,
and '0' and '&#8722;0' to refer to
<b><i>positiveZero</i></b> and <b><i>negativeZero</i></b>.</div></div><div class="block">Equality and order for <a href="#double" shape="rect">double</a> are defined as follows:
<ul><li><div class="p">Equality is identity, except that&#160; 0&#160;=&#160;&#8722;0&#160; (although
they are not identical) and&#160; NaN&#160;&#8800;&#160;NaN&#160;
(although NaN is of course identical to itself).</div><div class="p">0 and &#8722;0 are thus equivalent for purposes of enumerations,
identity constraints, and minimum and maximum values.
</div></li><li><div class="p">For the basic values, the order relation
on double is the order relation for rational numbers.&#160; INF is greater
than all other non-NaN values; &#8722;INF is less than all other non-NaN
values.&#160; NaN is <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> with any value
in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> including itself.&#160; 0 and &#8722;0
are greater than all the negative numbers and less than all the positive
numbers.</div></li></ul>
</div><div class="note"><div class="p"><b>Note:</b> Any value <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> with the value used for the four
bounding facets (<a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a>, <a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a>,
<a href="#dt-minExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minExclusive<span class="arrow">&#183;</span></a>, and <a href="#dt-maxExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxExclusive<span class="arrow">&#183;</span></a>) will be
excluded from the resulting restricted <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.&#160;
In particular, when NaN is used as a facet value for a bounding facet, since no
<a href="#double" shape="rect">double</a> values are <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>comparable<span class="arrow">&#183;</span></a>
with it, the result is a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> that is empty.&#160;
If any other value is used for a bounding facet,
NaN will be excluded from the resulting restricted <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>;
to add NaN back in requires union with the NaN-only space (which
may be derived using
the
pattern '<code>NaN</code>').</div></div><div class="note"><div class="p"><b>Note:</b> The Schema 1.0 version of this datatype did not differentiate between
0 and &#8722;0 and NaN was equal to itself.&#160; The changes were
made to make the datatype more closely mirror <a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>.</div></div></div><div class="div4">
<h5><a name="sec-lex-double" id="sec-lex-double" shape="rect"></a>3.3.5.2 Lexical Mapping</h5><div class="block">The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#double" shape="rect">double</a> is
the set of all decimal numerals with or without a decimal
point, numerals in scientific (exponential) notation, and
the <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>
'<code>INF</code>', '<code>+INF</code>',
'<code>-INF</code>', and '<code>NaN</code>'
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-doubleRep" id="nt-doubleRep" shape="rect"></a><span class="lhs">[5]
&#160;
<i>doubleRep</i></span>&#160;::= <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a>&#160;| <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a>&#160;|
<a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a>&#160;| <a href="#nt-numSpecReps" shape="rect"><i>numericalSpecialRep</i></a></div></div>
The <a href="#nt-doubleRep" shape="rect"><i>doubleRep</i></a> production is equivalent to this regular
expression
(after whitespace is eliminated from the expression):
<blockquote class="shrink"><p>
<code>(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)([Ee](\+|-)?[0-9]+)?
|(\+|-)?INF|NaN</code>
</p></blockquote>
</div><p>The <a href="#double" shape="rect">double</a> datatype is designed to implement for schema
processing the double-precision floating-point datatype of
<a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>.&#160; That specification does not specify specific
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a>,
but does prescribe requirements on any <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
used.&#160; Any <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
that maps the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> just described onto the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, is a function,
satisfies the requirements of
<a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>, and correctly handles the
mapping of the literals
'<code>INF</code>', '<code>NaN</code>', etc., to the
<a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a>,
satisfies the conformance requirements of this specification.</p><p>Since IEEE allows some variation in rounding of values, processors
conforming to this specification may exhibit some variation in their
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a>.</p><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> <a href="#f-doubleLexmap" shape="rect"><i><span class="arrow">&#183;</span>doubleLexicalMap<span class="arrow">&#183;</span></i></a> is
provided as an example of a simple algorithm that yields a conformant mapping,
and that provides the most accurate rounding possible&#8212;and is thus useful
for insuring inter-implementation reproducibility and inter-implementation
round-tripping.&#160; The simple rounding
algorithm used in <a href="#f-doubleLexmap" shape="rect"><i><span class="arrow">&#183;</span>doubleLexicalMap<span class="arrow">&#183;</span></i></a> may be more efficiently
implemented using the algorithms of <a href="#clinger1990" shape="rect">[Clinger, WD (1990)]</a>.</p><div class="note"><div class="p"><b>Note:</b> The Schema 1.0 version of this datatype did not permit rounding
algorithms whose results differed from <a href="#clinger1990" shape="rect">[Clinger, WD (1990)]</a>.</div></div><p>The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> <a href="#f-doubleCanmap" shape="rect"><i><span class="arrow">&#183;</span>doubleCanonicalMap<span class="arrow">&#183;</span></i></a> is
provided as an example of a mapping that does not produce unnecessarily long
<a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representations<span class="arrow">&#183;</span></a>.&#160;
Other algorithms which do not yield identical results for mapping from float values
to character strings are permitted by <a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>.</p></div><div class="div4">
<h5><a name="double-facets" id="double-facets" shape="rect"></a>3.3.5.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#double" shape="rect">double</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="double.whiteSpace" shape="rect" id="double.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#double" shape="rect">double</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#double" shape="rect">double</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>true</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>finite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="duration" id="duration" shape="rect"></a>3.3.6 duration</h4><p>
<span class="termdef"><a name="dt-duration" id="dt-duration" title="" shape="rect">[Definition:]&#160;&#160;</a><b>duration</b>
is a datatype that represents
durations of time.</span>&#160; The concept of duration being captured is
drawn from those of <a href="#ISO8601" shape="rect">[ISO 8601]</a>, specifically
<em>durations without fixed endpoints</em>.&#160; For example,
"15 days" (whose most common lexical representation
in <a href="#duration" shape="rect">duration</a> is "'<code>P15D</code>'") is
a <a href="#duration" shape="rect">duration</a> value; "15 days beginning 12 July
1995" and "15 days ending 12 July 1995" are
not <a href="#duration" shape="rect">duration</a>
values.&#160; <a href="#duration" shape="rect">duration</a> can provide addition and
subtraction operations between <a href="#duration" shape="rect">duration</a> values and
between <a href="#duration" shape="rect">duration</a>/<a href="#dateTime" shape="rect">dateTime</a> value pairs,
and can be the result of subtracting <a href="#dateTime" shape="rect">dateTime</a>
values.&#160; However, only addition to <a href="#dateTime" shape="rect">dateTime</a>
is required for XML Schema processing and is
defined in
the function <a href="#vp-dt-dateTimePlusDuration" shape="rect"><i><span class="arrow">&#183;</span>dateTimePlusDuration<span class="arrow">&#183;</span></i></a>.</p><div class="div4">
<h5><a name="sec-vs-duration" id="sec-vs-duration" shape="rect"></a>3.3.6.1 Value Space</h5><div class="block">
Duration values can be modelled as
two-property tuples. Each value consists of an integer number of
months and a decimal number of seconds. The
<a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> value <span class="rfc2119">must not</span> be negative if the
<a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> value is positive and <span class="rfc2119">must not</span> be
positive if the <a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> is negative.
<div class="defset">
<div class="defset-head">Properties of <a href="#duration" shape="rect">duration</a> Values</div>
<div class="deftop">
<b><a name="vp-du-month" id="vp-du-month" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a></b></div>
<div class="defindent"><a href="#integer" shape="rect">integer</a></div>
<div class="deftop">
<b><a name="vp-du-second" id="vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a></b></div>
<div class="defindent">a <a href="#decimal" shape="rect">decimal</a> value;
<span class="rfc2119">must not</span>
be negative if <a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> is positive, and
<span class="rfc2119">must not</span>
be positive if <a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> is negative.</div>
</div>
<a href="#duration" shape="rect">duration</a> is partially ordered.&#160;
Equality of <a href="#duration" shape="rect">duration</a>
is defined in terms of equality of <a href="#dateTime" shape="rect">dateTime</a>; order for
<a href="#duration" shape="rect">duration</a> is defined in terms of the order of
<a href="#dateTime" shape="rect">dateTime</a>. Specifically, the equality or order of
two <a href="#duration" shape="rect">duration</a> values is determined by adding each
<a href="#duration" shape="rect">duration</a> in the pair to each of the following
four <a href="#dateTime" shape="rect">dateTime</a> values:
<ul><li><div class="p">1696-09-01T00:00:00Z</div></li><li><div class="p">1697-02-01T00:00:00Z</div></li><li><div class="p">1903-03-01T00:00:00Z</div></li><li><div class="p">1903-07-01T00:00:00Z</div></li></ul>
If all four resulting <a href="#dateTime" shape="rect">dateTime</a> value pairs are ordered
the same way (less than, equal, or greater than), then the original
pair of <a href="#duration" shape="rect">duration</a> values is ordered the same way;
otherwise the original pair is <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a>.</div><div class="note"><div class="p"><b>Note:</b> These four values are chosen so as to maximize
the possible differences in results that could occur,
such as the difference when adding P1M and P30D:&#160;
1697-02-01T00:00:00Z&#160;+&#160;P1M&#160;&lt;&#160;1697-02-01T00:00:00Z&#160;+&#160;P30D&#160;,
but
1903-03-01T00:00:00Z&#160;+&#160;P1M&#160;&gt;&#160;1903-03-01T00:00:00Z&#160;+&#160;P30D&#160;,
so that&#160; P1M&#160;&lt;&gt;&#160;P30D&#160;.&#160;
If two <a href="#duration" shape="rect">duration</a> values are ordered the same way
when added to each of these four <a href="#dateTime" shape="rect">dateTime</a> values,
they will retain the same order when added
to <em>any</em> other <a href="#dateTime" shape="rect">dateTime</a>
values.&#160; Therefore,
two <a href="#duration" shape="rect">duration</a> values are incomparable if and only
if they can <em>ever</em> result in different orders when added to <em>any</em>
<a href="#dateTime" shape="rect">dateTime</a> value.</div></div><p>Under the definition just given,
two <a href="#duration" shape="rect">duration</a> values are equal if and only if they are identical.</p><div class="note"><a name="two_totally_ordered_subtypes" id="two_totally_ordered_subtypes" shape="rect"></a><div class="p"><b>Note:</b> Two totally ordered datatypes (<a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> and
<a href="#dayTimeDuration" shape="rect">dayTimeDuration</a>) are derived from <a href="#duration" shape="rect">duration</a> in
<a href="#ordinary-built-ins" shape="rect">Other Built-in Datatypes (&#167;3.4)</a>.</div></div><div class="note"><div class="p"><b>Note:</b> There are many ways to implement <a href="#duration" shape="rect">duration</a>,
some of which do not base the implementation on the two-component
model.&#160; This specification does not prescribe any particular
implementation, as long as the visible results are isomorphic to those
described herein.</div></div><div class="note"><div class="p"><b>Note:</b> See the conformance notes in <a href="#partial-implementation" shape="rect">Partial Implementation of Infinite Datatypes (&#167;5.4)</a>, which
apply to this datatype.</div></div></div><div class="div4">
<h5><a name="duration-lexical-space" id="duration-lexical-space" shape="rect"></a>3.3.6.2 Lexical Mapping</h5><div class="block">The <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a>
of <a href="#duration" shape="rect">duration</a> are
more or less based on the pattern:
<blockquote class="shrink"><p><code>P<var>n</var>Y<var>n</var>M<var>n</var>DT<var>n</var>H<var>n</var>M<var>n</var>S</code></p></blockquote>
</div><div class="block">More precisely, the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#duration" shape="rect">duration</a>
is the set of character
strings that satisfy <a href="#nt-durationRep" shape="rect"><i>durationLexicalRep</i></a> as defined by the following productions:
<div class="defset">
<div class="defset-head"> Lexical Representation Fragments</div>
<div class="prod">
<a name="nt-duYrFrag" id="nt-duYrFrag" shape="rect"></a><span class="lhs">[6]
&#160;
<i>duYearFrag</i></span>&#160;::= <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>&#160;'<code>Y</code>'</div><div class="prod">
<a name="nt-duMoFrag" id="nt-duMoFrag" shape="rect"></a><span class="lhs">[7]
&#160;
<i>duMonthFrag</i></span>&#160;::= <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>&#160;'<code>M</code>'</div><div class="prod">
<a name="nt-duDaFrag" id="nt-duDaFrag" shape="rect"></a><span class="lhs">[8]
&#160;
<i>duDayFrag</i></span>&#160;::= <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>&#160;'<code>D</code>'</div><div class="prod">
<a name="nt-duHrFrag" id="nt-duHrFrag" shape="rect"></a><span class="lhs">[9]
&#160;
<i>duHourFrag</i></span>&#160;::= <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>&#160;'<code>H</code>'</div><div class="prod">
<a name="nt-duMiFrag" id="nt-duMiFrag" shape="rect"></a><span class="lhs">[10]
&#160;
<i>duMinuteFrag</i></span>&#160;::= <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>&#160;'<code>M</code>'</div><div class="prod">
<a name="nt-duSeFrag" id="nt-duSeFrag" shape="rect"></a><span class="lhs">[11]
&#160;
<i>duSecondFrag</i></span>&#160;::= (<a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>&#160;|&#160;<a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a>)&#160;'<code>S</code>'</div><div class="prod">
<a name="nt-duYMFrag" id="nt-duYMFrag" shape="rect"></a><span class="lhs">[12]
&#160;
<i>duYearMonthFrag</i></span>&#160;::= (<a href="#nt-duYrFrag" shape="rect"><i>duYearFrag</i></a>&#160;<a href="#nt-duMoFrag" shape="rect"><i>duMonthFrag</i></a>?)&#160;| <a href="#nt-duMoFrag" shape="rect"><i>duMonthFrag</i></a></div><div class="prod">
<a name="nt-duTFrag" id="nt-duTFrag" shape="rect"></a><span class="lhs">[13]
&#160;
<i>duTimeFrag</i></span>&#160;::= '<code>T</code>'&#160;((<a href="#nt-duHrFrag" shape="rect"><i>duHourFrag</i></a>&#160;<a href="#nt-duMiFrag" shape="rect"><i>duMinuteFrag</i></a>?&#160;<a href="#nt-duSeFrag" shape="rect"><i>duSecondFrag</i></a>?)&#160;|
(<a href="#nt-duMiFrag" shape="rect"><i>duMinuteFrag</i></a>&#160;<a href="#nt-duSeFrag" shape="rect"><i>duSecondFrag</i></a>?)&#160;|
<a href="#nt-duSeFrag" shape="rect"><i>duSecondFrag</i></a>)</div><div class="prod">
<a name="nt-duDTFrag" id="nt-duDTFrag" shape="rect"></a><span class="lhs">[14]
&#160;
<i>duDayTimeFrag</i></span>&#160;::= (<a href="#nt-duDaFrag" shape="rect"><i>duDayFrag</i></a>&#160;<a href="#nt-duTFrag" shape="rect"><i>duTimeFrag</i></a>?)&#160;| <a href="#nt-duTFrag" shape="rect"><i>duTimeFrag</i></a></div></div>
<div class="defset">
<div class="defset-head">Lexical Representation</div>
<div class="prod">
<a name="nt-durationRep" id="nt-durationRep" shape="rect"></a><span class="lhs">[15]
&#160;
<i>durationLexicalRep</i></span>&#160;::= '<code>-</code>'?&#160;'<code>P</code>'&#160;((<a href="#nt-duYMFrag" shape="rect"><i>duYearMonthFrag</i></a>&#160;<a href="#nt-duDTFrag" shape="rect"><i>duDayTimeFrag</i></a>?)&#160;|&#160;<a href="#nt-duDTFrag" shape="rect"><i>duDayTimeFrag</i></a>)</div></div>
</div><p>Thus, a <a href="#nt-durationRep" shape="rect"><i>durationLexicalRep</i></a> consists of one or more of a <a href="#nt-duYrFrag" shape="rect"><i>duYearFrag</i></a>,
<a href="#nt-duMoFrag" shape="rect"><i>duMonthFrag</i></a>, <a href="#nt-duDaFrag" shape="rect"><i>duDayFrag</i></a>, <a href="#nt-duHrFrag" shape="rect"><i>duHourFrag</i></a>,
<a href="#nt-duMiFrag" shape="rect"><i>duMinuteFrag</i></a>, and/or <a href="#nt-duSeFrag" shape="rect"><i>duSecondFrag</i></a>, in order, with letters
'<code>P</code>' and '<code>T</code>' (and perhaps a '<code>-</code>')
where appropriate.</p><div class="block">The language accepted by the <a href="#nt-durationRep" shape="rect"><i>durationLexicalRep</i></a>
production is the set of strings which satisfy all of the following
three regular expressions:
<ul><li><div class="p">The expression
<blockquote class="shrink"><p>
<code>-?P[0-9]+Y?([0-9]+M)?([0-9]+D)?(T([0-9]+H)?([0-9]+M)?([0-9]+(\.[0-9]+)?S)?)?</code>
</p></blockquote>
matches only strings in which the fields occur in the proper order.</div></li><li><div class="p">The expression '<code>.*[YMDHS].*</code>' matches only
strings in which at least one field occurs.</div></li><li><div class="p">The expression '<code>.*[^T]</code>' matches
only strings in which '<code>T</code>' is not the final character, so that
if '<code>T</code>' appears, something follows it. The first rule
ensures that what follows '<code>T</code>' will be an hour,
minute, or second field.</div></li></ul>
The intersection of these three regular expressions is equivalent to
the following (after removal of the white space inserted here for
legibility):
</div><div class="block">
<pre xml:space="preserve">
-?P( ( ( [0-9]+Y([0-9]+M)?([0-9]+D)?
| ([0-9]+M)([0-9]+D)?
| ([0-9]+D)
)
(T ( ([0-9]+H)([0-9]+M)?([0-9]+(\.[0-9]+)?S)?
| ([0-9]+M)([0-9]+(\.[0-9]+)?S)?
| ([0-9]+(\.[0-9]+)?S)
)
)?
)
| (T ( ([0-9]+H)([0-9]+M)?([0-9]+(\.[0-9]+)?S)?
| ([0-9]+M)([0-9]+(\.[0-9]+)?S)?
| ([0-9]+(\.[0-9]+)?S)
)
)
)
</pre>
</div><p>The
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> for <a href="#duration" shape="rect">duration</a> is <a href="#f-durationMap" shape="rect"><i><span class="arrow">&#183;</span>durationMap<span class="arrow">&#183;</span></i></a>.
</p><p><a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>The canonical
mapping<span class="arrow">&#183;</span></a> for <a href="#duration" shape="rect">duration</a>
is <a href="#f-durationCanMap" shape="rect"><i><span class="arrow">&#183;</span>durationCanonicalMap<span class="arrow">&#183;</span></i></a>.
</p></div><div class="div4">
<h5><a name="duration-facets" id="duration-facets" shape="rect"></a>3.3.6.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#duration" shape="rect">duration</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="duration.whiteSpace" shape="rect" id="duration.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#duration" shape="rect">duration</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#duration" shape="rect">duration</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="duration-derived-types" id="duration-derived-types" shape="rect"></a>3.3.6.4 Related Datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatypes are
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#duration" shape="rect">duration</a></p><ul><li><a href="#yearMonthDuration" shape="rect">yearMonthDuration</a></li><li><a href="#dayTimeDuration" shape="rect">dayTimeDuration</a></li></ul></div></div><div class="div3">
<h4><a name="dateTime" id="dateTime" shape="rect"></a>3.3.7 dateTime</h4><p><a href="#dateTime" shape="rect">dateTime</a> represents
instants of time, optionally marked
with a particular time zone offset.&#160; Values representing
the same instant but having
different time zone offsets are equal but not
identical.</p><div class="div4">
<h5><a name="dateTime-value-space" id="dateTime-value-space" shape="rect"></a>3.3.7.1 Value Space</h5><p><a href="#dateTime" shape="rect">dateTime</a> uses the
<a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>, with no properties
except <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
permitted
to be <b><i>absent</i></b>. The <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> property remains
<a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>.</p><div class="note"><div class="p"><b>Note:</b> In version 1.0 of this specification, the
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> property was not permitted to have the value
zero. The year before the year 1
in the proleptic Gregorian calendar, traditionally referred to as
1 BC or as
1 BCE, was represented by a
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> value of &#8722;1, 2 BCE by &#8722;2, and so
forth. Of course, many, perhaps most,
references to 1 BCE (or 1 BC) actually refer not
to a year in the proleptic Gregorian calendar but to a year in the
Julian or "old style" calendar; the two correspond
approximately but not exactly to each other.
</div><div class="p">
In this version of this specification,
two changes are made in order to agree with existing usage.
First, <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> is permitted to have the value zero.
Second, the interpretation of
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> values is changed accordingly: a <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> value of zero represents 1 BCE, &#8722;1
represents 2 BCE, etc. This representation simplifies interval
arithmetic and leap-year calculation for dates before the common
era (which may be why astronomers
and others interested in such calculations with the proleptic
Gregorian calendar have adopted it), and is consistent with the
current edition of <a href="#ISO8601" shape="rect">[ISO 8601]</a>.
</div><div class="p">
Note that 1 BCE, 5 BCE, and so on (years 0000, -0004, etc. in the
lexical representation defined here) are leap years in the proleptic
Gregorian calendar used for the date/time datatypes defined here.
Version 1.0 of this specification was unclear about the treatment of
leap years before the common era.
If existing
schemas or data specify dates of 29 February for any years before the
common era, then some values giving
a date of 29 February which were valid under a plausible
interpretation of XSD 1.0 will be invalid under this specification,
and some which were invalid will be valid. With that possible
exception, schemas and data valid
under the old interpretation remain valid under the new.
</div></div><div class="constraintnote"><a id="con-dateTime-dayValue" name="con-dateTime-dayValue" shape="rect"></a><b>Constraint: Day-of-month Values</b><br clear="none" /><div class="constraint"><div class="p">The <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> value
<span class="rfc2119">must</span> be
no more than 30 if <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>
is one of 4, 6, 9, or 11;
no more than 28
if <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a> is 2 and
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> is not divisible 4,
or is divisible by 100 but not by 400;
and no more than 29 if <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>
is 2 and <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>
is divisible by 400, or by 4 but not by 100.</div></div></div><div class="note"><div class="p"><b>Note:</b> See the conformance note in
<a href="#partial-implementation" shape="rect">Partial Implementation of Infinite Datatypes (&#167;5.4)</a>
which applies to the <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> and <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a>
values of this datatype.</div></div><p>Equality and order are as prescribed
in <a href="#theSevenPropertyModel" shape="rect">The Seven-property Model (&#167;D.2.1)</a>.&#160;
<a href="#dateTime" shape="rect">dateTime</a> values are ordered
by their <a href="#vp-dt-timeOnTimeline" shape="rect"><i><span class="arrow">&#183;</span>timeOnTimeline<span class="arrow">&#183;</span></i></a> value.</p><div class="note"><div class="p"><b>Note:</b> Since the order of a <a href="#dateTime" shape="rect">dateTime</a>
value having a <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
relative to another value whose
<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> is <b><i>absent</i></b> is determined
by imputing time zone offsets of both +14:00
and &#8722;14:00 to the
value with no time zone offset, many such
combinations will be
<a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> because the two imputed
time zone offsets yield different orders.</div><div class="p">Although <a href="#dateTime" shape="rect">dateTime</a> and other
types related to dates and times have only a partial order, it
is possible for datatypes derived from <a href="#dateTime" shape="rect">dateTime</a> to have
total orders, if they are restricted (e.g. using the
<a href="#f-p" class="compref" shape="rect">pattern</a> facet) to the subset of values with, or
the subset of values without, time zone offsets. Similar restrictions
on other date- and time-related types will similarly produce
totally ordered subtypes. Note, however, that
such restrictions do not affect the value shown, for a given
<a href="#std" class="compref" shape="rect">Simple Type Definition</a>, in the <a href="#ff-o" class="compref" shape="rect">ordered</a> facet.</div></div><div class="note"><div class="p"><b>Note:</b> Order and equality are essentially the same for
<a href="#dateTime" shape="rect">dateTime</a> in this version of this specification as
they were in version 1.0.&#160; However, since values
now distinguish time zone offsets, equal
values with different <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>s
are not <em>identical</em>, and values with extreme
<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>s may no longer be equal
to any value with a smaller <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>.</div></div></div><div class="div4">
<h5><a name="dateTime-lexical-mapping" id="dateTime-lexical-mapping" shape="rect"></a>3.3.7.2 Lexical Mapping</h5><div class="block">The lexical representations for <a href="#dateTime" shape="rect">dateTime</a> are as follows:
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-dateTimeRep" id="nt-dateTimeRep" shape="rect"></a><span class="lhs">[16]
&#160;
<i>dateTimeLexicalRep</i></span>&#160;::= <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>&#160;'<code>-</code>'&#160;<a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>&#160;'<code>-</code>'&#160;<a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>&#160;'<code>T</code>'&#160;((<a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>&#160;'<code>:</code>'&#160;<a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>&#160;'<code>:</code>'&#160;<a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>)&#160;|
<a href="#nt-eodFrag" shape="rect"><i>endOfDayFrag</i></a>) <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>?&#160;&#160; <b>Constraint:</b>&#160; Day-of-month Representations</div></div>
<div class="constraintnote"><a id="con-dateTime-day" name="con-dateTime-day" shape="rect"></a><b>Constraint: Day-of-month Representations</b><br clear="none" /><div class="constraint"><div class="p">Within a <a href="#nt-dateTimeRep" shape="rect"><i>dateTimeLexicalRep</i></a>, a <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a> <span class="rfc2119">must not</span>
begin with the digit '<code>3</code>' or be '<code>29</code>'
unless the value to
which it would map would satisfy the value constraint on
<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> values
("Constraint: Day-of-month Values") given above.</div></div></div>
In such representations:
<ul><li><div class="p"><a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a> is a numeral consisting
of at least four decimal digits, optionally preceded by a minus sign;
leading '<code>0</code>' digits are prohibited except to bring the
digit count up to four.&#160;
It represents the <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> value.</div></li><li><div class="p">Subsequent '<code>-</code>', '<code>T</code>', and
'<code>:</code>', separate the various numerals.</div></li><li><div class="p"><a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>, <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>, <a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>,
and <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a> are numerals consisting
of exactly two decimal digits.&#160;
They represent
the <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>,
<a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>, and <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a> values
respectively.</div></li><li><div class="p"><a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>
is a numeral consisting
of exactly two decimal digits, or two decimal digits,
a decimal point, and one or more trailing digits.&#160;
It represents the <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> value.</div></li><li><div class="p">Alternatively, <a href="#nt-eodFrag" shape="rect"><i>endOfDayFrag</i></a> combines the <a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>,
<a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>, <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>, and their separators to
represent midnight of the day, which is the first moment of the next
day.</div></li><li><div class="p"><a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>, if present, specifies an
offset between UTC and local time.
Time zone offsets are a count of minutes (expressed in
<a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a> as a count of hours and minutes) that are added
or subtracted from UTC time to get the "local" time.&#160;
'<code>Z</code>' is an alternative representation of the time zone offset
'<code>00:00</code>',
which is, of course, zero minutes from UTC.</div><div class="p">For example, 2002-10-10T12:00:00&#8722;05:00
(noon on 10 October 2002, Central Daylight
Savings Time as well as Eastern Standard Time
in the U.S.) is equal to 2002-10-10T17:00:00Z,
five hours later than 2002-10-10T12:00:00Z.</div><div class="note"><div class="p"><b>Note:</b> For the most part, this specification adopts the distinction between
'timezone' and 'timezone offset' laid
out in <a href="#ref-timezones" shape="rect">[Timezones]</a>.
Version 1.0 of this specification did not make this distinction,
but used the term 'timezone' for the time zone
offset information associated with date- and time-related datatypes.
Some traces of the earlier usage remain visible in this and other
specifications. The names
<a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>
and <a href="#f-tz" class="compref" shape="rect">explicitTimezone</a>
are such traces ;
others will be found in the names of functions defined in
<a href="#F_O" shape="rect">[XQuery 1.0 and XPath 2.0 Functions and Operators]</a>, or in references in this specification to
"timezoned" and "non-timezoned"
values.</div></div></li></ul>
</div><div class="block">The <a href="#nt-dateTimeRep" shape="rect"><i>dateTimeLexicalRep</i></a> production
is equivalent to this regular expression
once whitespace is removed.
<pre xml:space="preserve">
-?([1-9][0-9]{3,}|0[0-9]{3})
-(0[1-9]|1[0-2])
-(0[1-9]|[12][0-9]|3[01])
T(([01][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9](\.[0-9]+)?|(24:00:00(\.0+)?))
(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?</pre>
Note that neither the <a href="#nt-dateTimeRep" shape="rect"><i>dateTimeLexicalRep</i></a> production
nor this regular
expression alone enforce the constraint
on <a href="#nt-dateTimeRep" shape="rect"><i>dateTimeLexicalRep</i></a> given above.</div><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
for <a href="#dateTime" shape="rect">dateTime</a> is <a href="#vp-dateTimeLexRep" shape="rect"><i><span class="arrow">&#183;</span>dateTimeLexicalMap<span class="arrow">&#183;</span></i></a>.
The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is <a href="#vp-dateTimeCanRep" shape="rect"><i><span class="arrow">&#183;</span>dateTimeCanonicalMap<span class="arrow">&#183;</span></i></a>.
</p></div><div class="div4">
<h5><a name="dateTime-facets" id="dateTime-facets" shape="rect"></a>3.3.7.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#dateTime" shape="rect">dateTime</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="dateTime.whiteSpace" shape="rect" id="dateTime.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#dateTime" shape="rect">dateTime</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-explicitTimezone" name="dateTime.explicitTimezone" shape="rect" id="dateTime.explicitTimezone">explicitTimezone</a><span class="normal"><span class="normal"> = <b><i>optional</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#dateTime" shape="rect">dateTime</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#dateTime" shape="rect">dateTime</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="dateTime-derived-types" id="dateTime-derived-types" shape="rect"></a>3.3.7.4 Related Datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#dateTime" shape="rect">dateTime</a></p><ul><li><a href="#dateTimeStamp" shape="rect">dateTimeStamp</a></li></ul></div></div><div class="div3">
<h4><a name="time" id="time" shape="rect"></a>3.3.8 time</h4><p><a href="#time" shape="rect">time</a>
represents instants of time that recur at the same point in each
calendar day, or that occur in some arbitrary calendar day.</p><div class="div4">
<h5><a name="time-value-space" id="time-value-space" shape="rect"></a>3.3.8.1 Value Space</h5><p><a href="#time" shape="rect">time</a> uses the <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>, with
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>,
and <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> required
to be <b><i>absent</i></b>.&#160; <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> remains
<a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>.</p><div class="note"><div class="p"><b>Note:</b> See the conformance note in
<a href="#partial-implementation" shape="rect">Partial Implementation of Infinite Datatypes (&#167;5.4)</a>
which applies to the <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> value of this datatype.</div></div><p>Equality and order are as prescribed in
<a href="#theSevenPropertyModel" shape="rect">The Seven-property Model (&#167;D.2.1)</a>.&#160; <a href="#time" shape="rect">time</a> values
(points in time in an "arbitrary" day) are ordered
taking into account their <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>.</p><p>A calendar (or
"local time") day with a larger positive
time zone offset begins earlier than the same calendar day with
a smaller (or negative)
time zone offset. Since the time zone offsets allowed spread over 28 hours,
it is
possible for the period denoted by a given calendar day with one
time zone offset to be completely disjoint from the period denoted by
the same calendar day with a different offset
&#8212; the earlier day ends before the
later one starts.&#160;
The moments in time
represented by a single calendar day are spread over a 52-hour
interval, from the beginning of the day in the +14:00 time zone offset to the
end of that day in the &#8722;14:00 time zone offset.</p><div class="note"><div class="p"><b>Note:</b> The relative
order of two <a href="#time" shape="rect">time</a> values, one of which has a <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> of <b><i>absent</i></b> is determined by imputing
time zone offsets of both +14:00 and &#8722;14:00 to the value without an offset. Many such combinations will be <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> because the two imputed time zone offsets yield
different orders.&#160; However, for a given non-timezoned value,
there will always be timezoned values at one or both ends of the
52-hour interval that are <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>comparable<span class="arrow">&#183;</span></a> (because the interval of
<a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparability<span class="arrow">&#183;</span></a> is only
28
hours wide).</div><div class="p">
Some pairs of <a href="#time" shape="rect">time</a> literals
which
in the 1.0 version of this specification
denoted the same value
now (in this version) denote distinct values instead,
because values now include time zone offset information.
Some such pairs,
such as '<code>05:00:00-03:00</code>' and '<code>10:00:00+02:00</code>',
now denote equal though distinct values
(because they identify the same points on the time line);
others,
such as '<code>23:00:00-03:00</code>' and '<code>02:00:00Z</code>',
now denote unequal values (23:00:00&#8722;03:00 &gt; 02:00:00Z
because 23:00:00&#8722;03:00 on any given day is equal to
02:00:00Z on <em>the next day</em>).
</div></div></div><div class="div4">
<h5><a name="time-lexical-mapping" id="time-lexical-mapping" shape="rect"></a>3.3.8.2 Lexical Mappings</h5><div class="block">The lexical representations for <a href="#time" shape="rect">time</a>
are "projections" of
those of <a href="#dateTime" shape="rect">dateTime</a>, as follows:
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-timeRep" id="nt-timeRep" shape="rect"></a><span class="lhs">[17]
&#160;
<i>timeLexicalRep</i></span>&#160;::= ((<a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>&#160;'<code>:</code>'&#160;<a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>&#160;'<code>:</code>'&#160;<a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>)&#160;|
<a href="#nt-eodFrag" shape="rect"><i>endOfDayFrag</i></a>) <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>?</div></div>
The <a href="#nt-timeRep" shape="rect"><i>timeLexicalRep</i></a> production
is equivalent to this
regular expression, once whitespace is
removed:
<blockquote><blockquote><p><code>
(([01][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9](\.[0-9]+)?|(24:00:00(\.0+)?))(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?</code></p></blockquote></blockquote>
Note that neither
the <a href="#nt-timeRep" shape="rect"><i>timeLexicalRep</i></a> production
nor this regular
expression alone enforce the constraint
on <a href="#nt-timeRep" shape="rect"><i>timeLexicalRep</i></a> given above.
</div><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
for <a href="#time" shape="rect">time</a> is
<a href="#vp-timeLexRep" shape="rect"><i><span class="arrow">&#183;</span>timeLexicalMap<span class="arrow">&#183;</span></i></a>; the <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is
<a href="#vp-timeCanRep" shape="rect"><i><span class="arrow">&#183;</span>timeCanonicalMap<span class="arrow">&#183;</span></i></a>.
</p><div class="note"><div class="p"><b>Note:</b> The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> maps '<code>00:00:00</code>' and
'<code>24:00:00</code>' to the same value, namely midnight
(<a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>&#160;=&#160;0&#160;,
<a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>&#160;=&#160;0&#160;,
<a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a>&#160;=&#160;0).</div></div></div><div class="div4">
<h5><a name="time-facets" id="time-facets" shape="rect"></a>3.3.8.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#time" shape="rect">time</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="time.whiteSpace" shape="rect" id="time.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#time" shape="rect">time</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-explicitTimezone" name="time.explicitTimezone" shape="rect" id="time.explicitTimezone">explicitTimezone</a><span class="normal"><span class="normal"> = <b><i>optional</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#time" shape="rect">time</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#time" shape="rect">time</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="date" id="date" shape="rect"></a>3.3.9 date</h4><p><span class="termdef"><a name="dt-date" id="dt-date" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>date</b>
represents top-open intervals of exactly one day in length on the timelines of
<a href="#dateTime" shape="rect">dateTime</a>, beginning on the beginning moment of each
day, up to but not including the beginning
moment of the next day).&#160; For non-timezoned values, the top-open
intervals disjointly cover the non-timezoned timeline,
one per day.&#160; For timezoned
values, the intervals begin at every minute and therefore overlap.
</span>
</p><div class="div4">
<h5><a name="date-value-space" id="date-value-space" shape="rect"></a>3.3.9.1 Value Space</h5><p><a href="#date" shape="rect">date</a> uses the <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>, with
<a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>,
and <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> required
to be <b><i>absent</i></b>.&#160; <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> remains
<a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>.</p><div class="constraintnote"><a id="con-date-dayValue" name="con-date-dayValue" shape="rect"></a><b>Constraint: Day-of-month Values</b><br clear="none" /><div class="constraint"><div class="p">The <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> value <span class="rfc2119">must</span> be
no more than 30 if <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>
is one of 4, 6, 9, or 11, no more than 28
if <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a> is 2 and
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> is not divisble 4,
or is divisible by 100 but not by 400,
and no more than 29 if <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>
is 2 and <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>
is divisible by 400, or by 4 but not by 100.</div></div></div><div class="note"><div class="p"><b>Note:</b> See the conformance note in
<a href="#partial-implementation" shape="rect">Partial Implementation of Infinite Datatypes (&#167;5.4)</a>
which applies to the <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>
value of this datatype.</div></div><p>Equality and order are as prescribed in
<a href="#theSevenPropertyModel" shape="rect">The Seven-property Model (&#167;D.2.1)</a>.</p><div class="note"><div class="p"><b>Note:</b> In version 1.0 of this specification, <a href="#date" shape="rect">date</a> values
did not retain a time zone offset explicitly, but for
offsets
not too far from
zero
their time zone offset could be recovered based on
their value's first moment on the timeline.&#160; The
<a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> retains all time zone offsets.</div><div class="p">Some <a href="#date" shape="rect">date</a>
values with
different time zone offsets that were identical in the 1.0 version
of this specification, such as 2000-01-01+13:00
and 1999-12-31&#8722;11:00, are in this version
of this specification equal (because they begin
at the same moment on the time line) but are
not identical (because they have and retain different
time zone offsets).&#160; This situation will arise for
dates only if one has a far-from-zero time zone offset and
hence in 1.0 its "recoverable time zone offset"
was different from the the time zone offset which is retained
in the <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> used in this version
of this specification.</div></div></div><div class="div4">
<h5><a name="date-lexical-mapping" id="date-lexical-mapping" shape="rect"></a>3.3.9.2 Lexical Mapping</h5><div class="block">The lexical representations for <a href="#date" shape="rect">date</a>
are "projections" of
those of <a href="#dateTime" shape="rect">dateTime</a>, as follows:
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-dateRep" id="nt-dateRep" shape="rect"></a><span class="lhs">[18]
&#160;
<i>dateLexicalRep</i></span>&#160;::= <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>&#160;'<code>-</code>'&#160;<a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>&#160;'<code>-</code>'&#160;<a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a> <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>?&#160;&#160; <b>Constraint:</b>&#160; Day-of-month Representations</div></div>
<div class="constraintnote"><a id="con-date-day" name="con-date-day" shape="rect"></a><b>Constraint: Day-of-month Representations</b><br clear="none" /><div class="constraint"><div class="p">Within a
<a href="#nt-dateRep" shape="rect"><i>dateLexicalRep</i></a>,
a <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a> <span class="rfc2119">must not</span>
begin with the digit '<code>3</code>' or be '<code>29</code>'
unless the value to
which it would map would satisfy the value constraint on
<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> values
("Constraint: Day-of-month Values") given above.</div></div></div>
The <a href="#nt-dateRep" shape="rect"><i>dateLexicalRep</i></a> production
is equivalent to this
regular expression:
<blockquote class="shrink"><p>
<code>-?([1-9][0-9]{3,}|0[0-9]{3})-(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?</code>
</p></blockquote>
Note that neither
the <a href="#nt-dateRep" shape="rect"><i>dateLexicalRep</i></a> production
nor this regular
expression alone enforce the constraint
on <a href="#nt-dateRep" shape="rect"><i>dateLexicalRep</i></a> given above.</div><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
for <a href="#date" shape="rect">date</a> is <a href="#vp-dateLexRep" shape="rect"><i><span class="arrow">&#183;</span>dateLexicalMap<span class="arrow">&#183;</span></i></a>.
The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is <a href="#vp-dateCanRep" shape="rect"><i><span class="arrow">&#183;</span>dateCanonicalMap<span class="arrow">&#183;</span></i></a>.
</p></div><div class="div4">
<h5><a name="date-facets" id="date-facets" shape="rect"></a>3.3.9.3 Facets</h5><p><span class="normal"><span class="normal">The
<a href="#date" shape="rect">date</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="date.whiteSpace" shape="rect" id="date.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#date" shape="rect">date</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-explicitTimezone" name="date.explicitTimezone" shape="rect" id="date.explicitTimezone">explicitTimezone</a><span class="normal"><span class="normal"> = <b><i>optional</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#date" shape="rect">date</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#date" shape="rect">date</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="gYearMonth" id="gYearMonth" shape="rect"></a>3.3.10 gYearMonth</h4><p>
<b>gYearMonth</b>
represents specific whole Gregorian months in specific
Gregorian years.</p><div class="note"><div class="p"><b>Note:</b> Because month/year combinations in one calendar only rarely correspond
to month/year combinations in other calendars, values of this type
are not, in general, convertible to simple values corresponding to month/year
combinations in other calendars.&#160; This type should therefore be used
with caution in contexts where conversion to other calendars is desired.</div></div><div class="div4">
<h5><a name="gYearMonth-value-space" id="gYearMonth-value-space" shape="rect"></a>3.3.10.1 Value Space</h5><p><a href="#gYearMonth" shape="rect">gYearMonth</a> uses the <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>, with
<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>,
<a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>, and <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> required
to be <b><i>absent</i></b>.&#160; <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> remains
<a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>.</p><div class="note"><div class="p"><b>Note:</b> See the conformance note in
<a href="#partial-implementation" shape="rect">Partial Implementation of Infinite Datatypes (&#167;5.4)</a>
which applies to the <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> value of this datatype.</div></div><p>Equality and order are as prescribed in
<a href="#theSevenPropertyModel" shape="rect">The Seven-property Model (&#167;D.2.1)</a>.</p></div><div class="div4">
<h5><a name="gYearMonth-lexical-repr" id="gYearMonth-lexical-repr" shape="rect"></a>3.3.10.2 Lexical
Mapping</h5><div class="block">The lexical representations for
<a href="#gYearMonth" shape="rect">gYearMonth</a> are "projections" of
those of <a href="#dateTime" shape="rect">dateTime</a>, as follows:
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-gYearMonthRep" id="nt-gYearMonthRep" shape="rect"></a><span class="lhs">[19]
&#160;
<i>gYearMonthLexicalRep</i></span>&#160;::= <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a> '<code>-</code>'&#160;<a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>&#160;<a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>?</div></div>
The <a href="#nt-gYearMonthRep" shape="rect"><i>gYearMonthLexicalRep</i></a> is equivalent to this regular expression:
<blockquote class="shrink"><p>
<code>-?([1-9][0-9]{3,}|0[0-9]{3})-(0[1-9]|1[0-2])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?</code>
</p></blockquote>
</div><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
for <a href="#gYearMonth" shape="rect">gYearMonth</a> is <a href="#vp-gYearMonthLexRep" shape="rect"><i><span class="arrow">&#183;</span>gYearMonthLexicalMap<span class="arrow">&#183;</span></i></a>.
The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is <a href="#vp-gYearMonthCanRep" shape="rect"><i><span class="arrow">&#183;</span>gYearMonthCanonicalMap<span class="arrow">&#183;</span></i></a>.
</p></div><div class="div4">
<h5><a name="gYearMonth-facets" id="gYearMonth-facets" shape="rect"></a>3.3.10.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#gYearMonth" shape="rect">gYearMonth</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="gYearMonth.whiteSpace" shape="rect" id="gYearMonth.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#gYearMonth" shape="rect">gYearMonth</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-explicitTimezone" name="gYearMonth.explicitTimezone" shape="rect" id="gYearMonth.explicitTimezone">explicitTimezone</a><span class="normal"><span class="normal"> = <b><i>optional</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#gYearMonth" shape="rect">gYearMonth</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#gYearMonth" shape="rect">gYearMonth</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="gYear" id="gYear" shape="rect"></a>3.3.11 gYear</h4><p><b>gYear</b>
represents Gregorian calendar years.</p><div class="note"><div class="p"><b>Note:</b>
Because years in one calendar only rarely correspond to years
in other calendars, values of this type
are not, in general, convertible to simple values corresponding to years
in other calendars.&#160; This type should therefore be used with caution
in contexts where conversion to other calendars is desired.
</div></div><div class="div4">
<h5><a name="gYear-value-space" id="gYear-value-space" shape="rect"></a>3.3.11.1 Value Space</h5><p><a href="#gYear" shape="rect">gYear</a> uses the <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>, with
<a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>,
<a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>, and <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> required
to be <b><i>absent</i></b>.&#160; <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> remains
<a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>.</p><div class="note"><div class="p"><b>Note:</b> See the conformance note in
<a href="#partial-implementation" shape="rect">Partial Implementation of Infinite Datatypes (&#167;5.4)</a>
which applies to the <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> value of this datatype.</div></div><p>Equality and order are as prescribed in
<a href="#theSevenPropertyModel" shape="rect">The Seven-property Model (&#167;D.2.1)</a>.</p></div><div class="div4">
<h5><a name="gYear-lexical-repr" id="gYear-lexical-repr" shape="rect"></a>3.3.11.2 Lexical
Mapping</h5><div class="block">The lexical representations for
<a href="#gYear" shape="rect">gYear</a> are "projections" of
those of <a href="#dateTime" shape="rect">dateTime</a>, as follows:
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-gYearRep" id="nt-gYearRep" shape="rect"></a><span class="lhs">[20]
&#160;
<i>gYearLexicalRep</i></span>&#160;::= <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>&#160;<a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>?</div></div>
The <a href="#nt-gYearRep" shape="rect"><i>gYearLexicalRep</i></a> is equivalent to this regular expression:
<blockquote class="shrink"><p>
<code>-?([1-9][0-9]{3,}|0[0-9]{3})(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?</code>
</p></blockquote>
</div><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
for <a href="#gYear" shape="rect">gYear</a> is <a href="#vp-gYearLexRep" shape="rect"><i><span class="arrow">&#183;</span>gYearLexicalMap<span class="arrow">&#183;</span></i></a>.
The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a>
is <a href="#vp-gYearCanRep" shape="rect"><i><span class="arrow">&#183;</span>gYearCanonicalMap<span class="arrow">&#183;</span></i></a>.
</p></div><div class="div4">
<h5><a name="gYear-facets" id="gYear-facets" shape="rect"></a>3.3.11.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#gYear" shape="rect">gYear</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="gYear.whiteSpace" shape="rect" id="gYear.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#gYear" shape="rect">gYear</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-explicitTimezone" name="gYear.explicitTimezone" shape="rect" id="gYear.explicitTimezone">explicitTimezone</a><span class="normal"><span class="normal"> = <b><i>optional</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#gYear" shape="rect">gYear</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#gYear" shape="rect">gYear</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="gMonthDay" id="gMonthDay" shape="rect"></a>3.3.12 gMonthDay</h4><p><a href="#gMonthDay" shape="rect">gMonthDay</a> represents whole calendar
days that recur at the same point in each calendar year, or that occur
in some arbitrary calendar year.&#160; (Obviously,
days beyond 28 cannot occur in all Februaries; 29 is nonetheless
permitted.)</p><p>This datatype can be used, for example, to record
birthdays; an instance of the datatype could be used to say that
someone's birthday occurs on the 14th of September every year.</p><div class="note"><div class="p"><b>Note:</b>
Because day/month combinations in one calendar only rarely correspond
to day/month combinations in other calendars, values of this type do not,
in general, have any straightforward or intuitive representation
in terms of most other calendars. This type should therefore be
used with caution in contexts where conversion to other calendars
is desired.
</div></div><div class="div4">
<h5><a name="gMonthDay-value-space" id="gMonthDay-value-space" shape="rect"></a>3.3.12.1 Value Space</h5><p><a href="#gMonthDay" shape="rect">gMonthDay</a> uses the <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>, with
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>, and <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> required
to be <b><i>absent</i></b>.&#160; <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> remains
<a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>.</p><div class="constraintnote"><a id="con-gMonthDay-dayValue" name="con-gMonthDay-dayValue" shape="rect"></a><b>Constraint: Day-of-month Values</b><br clear="none" /><div class="constraint"><div class="p">The <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> value <span class="rfc2119">must</span> be no more than 30 if <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>
is one of 4, 6, 9, or 11, and no more than 29 if <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a> is 2.</div></div></div><p>Equality and order are as prescribed in
<a href="#theSevenPropertyModel" shape="rect">The Seven-property Model (&#167;D.2.1)</a>.</p><div class="note"><div class="p"><b>Note:</b> In version 1.0 of this specification, <a href="#gMonthDay" shape="rect">gMonthDay</a> values
did not retain a time zone offset explicitly, but for time zone offsets not too far from
<a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a> their time zone offset could be recovered based on
their value's first moment on the timeline.&#160; The
<a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> retains all time zone offsets.</div><div class="p">An example that shows the difference from version 1.0 (see
<a href="#gMonthDay-lexical-repr" shape="rect">Lexical
Mapping (&#167;3.3.12.2)</a> for the notations):
<ul><li><div class="p">A day is a calendar (or "local time") day
offset from <a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a>
by the appropriate interval;
this is now true for all <a href="#vp-dt-day" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>
values, including those with time zone offsets outside the range
+12:00 through -11:59 inclusive:</div><div class="p">--12-12+13:00&#160;&lt; --12-12+11:00&#160;
(just as --12-12+12:00 has always been less than
--12-12+11:00, but in version 1.0&#160;
--12-12+13:00&#160;&gt; --12-12+11:00&#160;, since
--12-12+13:00's "recoverable
time zone offset" was &#8722;11:00)</div></li></ul>
</div></div></div><div class="div4">
<h5><a name="gMonthDay-lexical-repr" id="gMonthDay-lexical-repr" shape="rect"></a>3.3.12.2 Lexical
Mapping</h5><div class="block">The lexical representations for
<a href="#gMonthDay" shape="rect">gMonthDay</a> are "projections"
of those of <a href="#dateTime" shape="rect">dateTime</a>, as follows:
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-gMonthDayRep" id="nt-gMonthDayRep" shape="rect"></a><span class="lhs">[21]
&#160;
<i>gMonthDayLexicalRep</i></span>&#160;::= '<code>--</code>'&#160;<a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>&#160;'<code>-</code>'&#160;<a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a> <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>?&#160;&#160; <b>Constraint:</b>&#160; Day-of-month Representations</div></div>
<div class="constraintnote"><a id="con-gMonthDay-day" name="con-gMonthDay-day" shape="rect"></a><b>Constraint: Day-of-month Representations</b><br clear="none" /><div class="constraint"><div class="p">Within a <a href="#nt-gMonthDayRep" shape="rect"><i>gMonthDayLexicalRep</i></a>, a <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a> <span class="rfc2119">must not</span>
begin with the digit '<code>3</code>' or be '<code>29</code>'
unless the value to
which it would map would satisfy the value constraint on
<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> values
("Constraint: Day-of-month Values") given above.</div></div></div>
The <a href="#nt-gMonthDayRep" shape="rect"><i>gMonthDayLexicalRep</i></a> is equivalent to this regular
expression:
<blockquote class="shrink"><p>
<code>--(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?</code></p></blockquote>
Note that neither
the <a href="#nt-gMonthDayRep" shape="rect"><i>gMonthDayLexicalRep</i></a> production
nor this regular
expression alone enforce the constraint
on <a href="#nt-gMonthDayRep" shape="rect"><i>gMonthDayLexicalRep</i></a> given above.</div><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
for <a href="#gMonthDay" shape="rect">gMonthDay</a> is <a href="#vp-gMonthDayLexRep" shape="rect"><i><span class="arrow">&#183;</span>gMonthDayLexicalMap<span class="arrow">&#183;</span></i></a>.
The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is <a href="#vp-gMonthDayCanRep" shape="rect"><i><span class="arrow">&#183;</span>gMonthDayCanonicalMap<span class="arrow">&#183;</span></i></a>.
</p></div><div class="div4">
<h5><a name="gMonthDay-facets" id="gMonthDay-facets" shape="rect"></a>3.3.12.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#gMonthDay" shape="rect">gMonthDay</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="gMonthDay.whiteSpace" shape="rect" id="gMonthDay.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#gMonthDay" shape="rect">gMonthDay</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-explicitTimezone" name="gMonthDay.explicitTimezone" shape="rect" id="gMonthDay.explicitTimezone">explicitTimezone</a><span class="normal"><span class="normal"> = <b><i>optional</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#gMonthDay" shape="rect">gMonthDay</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#gMonthDay" shape="rect">gMonthDay</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="gDay" id="gDay" shape="rect"></a>3.3.13 gDay</h4><p><span class="termdef"><a name="dt-gday" id="dt-gday" title="" shape="rect">[Definition:]&#160;&#160;</a><b>gDay</b>
represents
whole days within an arbitrary month&#8212;days that recur at the same
point in each (Gregorian) month.</span> This datatype is used to represent a specific day of the month.
To indicate, for example, that an employee gets a paycheck on the 15th of each month.&#160; (Obviously, days
beyond 28 cannot occur in <em>all</em> months; they are nonetheless permitted, up to 31.)</p><div class="note"><div class="p"><b>Note:</b> Because days in one calendar only rarely
correspond to days in other calendars,
<a href="#gDay" shape="rect">gDay</a>
values do not, in general, have any straightforward or
intuitive representation in terms of most
non-Gregorian
calendars.
<a href="#gDay" shape="rect">gDay</a>
should therefore be used with caution in contexts where conversion to
other calendars is desired.</div></div><div class="div4">
<h5><a name="sec-vs-gDay" id="sec-vs-gDay" shape="rect"></a>3.3.13.1 Value Space</h5><p><a href="#gDay" shape="rect">gDay</a> uses the <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>, with
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>,
<a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>,
and <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> required to be
<b><i>absent</i></b>.&#160; <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> remains
<a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a> and <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>
must be between 1 and 31 inclusive.</p><p>Equality and order are as prescribed in
<a href="#theSevenPropertyModel" shape="rect">The Seven-property Model (&#167;D.2.1)</a>.&#160; Since <a href="#gDay" shape="rect">gDay</a>
values (days) are ordered by their first moments, it is possible
for apparent anomalies to appear in the order when
<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> values
differ by at least 24
hours.&#160; (It is possible for <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
values to differ by up to 28 hours.)</p><div class="block">
Examples that may appear anomalous (see <a href="#gDay-lexical-mapping" shape="rect">Lexical Mapping (&#167;3.3.13.2)</a> for the notations):
<ul><li><div class="p">---15&#160;&lt;&#160;---16&#160;, but&#160; ---15&#8722;13:00&#160;&gt;&#160;---16+13:00</div></li><li><div class="p">---15&#8722;11:00&#160;=&#160;---16+13:00</div></li><li><div class="p">---15&#8722;13:00&#160;&lt;&gt;&#160;---16&#160;,
because&#160; ---15&#8722;13:00&#160;&gt;&#160;---16+14:00&#160;
and ---15&#8722;13:00&#160;&lt;&#160;16&#8722;14:00</div></li></ul>
</div><div class="note"><div class="p"><b>Note:</b>
Time zone offsets do not cause wrap-around at the end of the month:&#160;
the last day of a
given month with a time zone offset of
&#8722;13:00 may start after the first
day of the <em>next</em> month
with offset +13:00, as
measured on the global timeline,
but nonetheless&#160;
---01+13:00&#160;&lt;&#160;---31&#8722;13:00&#160;.</div></div></div><div class="div4">
<h5><a name="gDay-lexical-mapping" id="gDay-lexical-mapping" shape="rect"></a>3.3.13.2 Lexical Mapping</h5><div class="block">
The lexical representations for <a href="#gDay" shape="rect">gDay</a> are
"projections"
of those of <a href="#dateTime" shape="rect">dateTime</a>, as follows:
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-gDayRep" id="nt-gDayRep" shape="rect"></a><span class="lhs">[22]
&#160;
<i>gDayLexicalRep</i></span>&#160;::= '<code>---</code>'&#160;<a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>&#160;<a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>?</div></div>
The <a href="#nt-gDayRep" shape="rect"><i>gDayLexicalRep</i></a> is equivalent to this regular expression:
<blockquote class="shrink"><p>
<code>---(0[1-9]|[12][0-9]|3[01])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?</code>
</p></blockquote>
</div><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>
for <a href="#gDay" shape="rect">gDay</a> is <a href="#vp-gDayLexRep" shape="rect"><i><span class="arrow">&#183;</span>gDayLexicalMap<span class="arrow">&#183;</span></i></a>.
The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is <a href="#vp-gDayCanRep" shape="rect"><i><span class="arrow">&#183;</span>gDayCanonicalMap<span class="arrow">&#183;</span></i></a>.
</p></div><div class="div4">
<h5><a name="gDay-facets" id="gDay-facets" shape="rect"></a>3.3.13.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#gDay" shape="rect">gDay</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="gDay.whiteSpace" shape="rect" id="gDay.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#gDay" shape="rect">gDay</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-explicitTimezone" name="gDay.explicitTimezone" shape="rect" id="gDay.explicitTimezone">explicitTimezone</a><span class="normal"><span class="normal"> = <b><i>optional</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#gDay" shape="rect">gDay</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#gDay" shape="rect">gDay</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="gMonth" id="gMonth" shape="rect"></a>3.3.14 gMonth</h4><p><b>gMonth</b>
represents whole (Gregorian) months
within an arbitrary year&#8212;months that recur at the same point in
each year.&#160; It might be used, for example, to say what
month annual Thanksgiving celebrations fall in different countries
(--11 in the United States, --10 in Canada, and possibly other months in
other countries).</p><div class="note"><div class="p"><b>Note:</b>
Because months in one calendar only rarely correspond
to months in other calendars, values of this type do not,
in general, have any straightforward or intuitive representation
in terms of most other calendars. This type should therefore be
used with caution in contexts where conversion to other calendars
is desired.
</div></div><div class="div4">
<h5><a name="gMonth-value-space" id="gMonth-value-space" shape="rect"></a>3.3.14.1 Value Space</h5><p><a href="#gMonth" shape="rect">gMonth</a> uses the <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>, with
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>, and <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> required
to be <b><i>absent</i></b>.&#160; <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> remains
<a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>.</p><p>Equality and order are as prescribed in
<a href="#theSevenPropertyModel" shape="rect">The Seven-property Model (&#167;D.2.1)</a>.</p></div><div class="div4">
<h5><a name="gMonth-lexical-repr" id="gMonth-lexical-repr" shape="rect"></a>3.3.14.2 Lexical
Mapping</h5><div class="block">The lexical representations for <a href="#gMonth" shape="rect">gMonth</a> are "projections" of
those of <a href="#dateTime" shape="rect">dateTime</a>, as follows:
<div class="defset">
<div class="defset-head">Lexical Space</div>
<div class="prod">
<a name="nt-gMonthRep" id="nt-gMonthRep" shape="rect"></a><span class="lhs">[23]
&#160;
<i>gMonthLexicalRep</i></span>&#160;::= '<code>--</code>'&#160;<a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>&#160;<a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>?</div></div>
The <a href="#nt-gMonthRep" shape="rect"><i>gMonthLexicalRep</i></a> is equivalent to this regular expression:
<blockquote class="shrink"><p>
<code>--(0[1-9]|1[0-2])(Z|(\+|-)((0[0-9]|1[0-3]):[0-5][0-9]|14:00))?</code>
</p></blockquote>
</div><p>
The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> for <a href="#gMonth" shape="rect">gMonth</a> is <a href="#vp-gMonthLexRep" shape="rect"><i><span class="arrow">&#183;</span>gMonthLexicalMap<span class="arrow">&#183;</span></i></a>.
The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is <a href="#vp-gMonthCanRep" shape="rect"><i><span class="arrow">&#183;</span>gMonthCanonicalMap<span class="arrow">&#183;</span></i></a>.
</p></div><div class="div4">
<h5><a name="gMonth-facets" id="gMonth-facets" shape="rect"></a>3.3.14.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#gMonth" shape="rect">gMonth</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="gMonth.whiteSpace" shape="rect" id="gMonth.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#gMonth" shape="rect">gMonth</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-explicitTimezone" name="gMonth.explicitTimezone" shape="rect" id="gMonth.explicitTimezone">explicitTimezone</a><span class="normal"><span class="normal"> = <b><i>optional</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#gMonth" shape="rect">gMonth</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#gMonth" shape="rect">gMonth</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="hexBinary" id="hexBinary" shape="rect"></a>3.3.15 hexBinary</h4><p><span class="termdef"><a name="dt-hexBinary" id="dt-hexBinary" title="" shape="rect">[Definition:]&#160;&#160;</a><b>hexBinary</b>
represents arbitrary hex-encoded binary data.&#160;
</span>
</p><div class="div4">
<h5><a name="sec-vs-hexbin" id="sec-vs-hexbin" shape="rect"></a>3.3.15.1 Value Space</h5><p>The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<a href="#hexBinary" shape="rect">hexBinary</a>
is the set of
finite-length sequences of zero or more
binary octets.&#160; The
length of a value is the number of octets.</p></div><div class="div4">
<h5><a name="hexBinary-lexical-representation" id="hexBinary-lexical-representation" shape="rect"></a>3.3.15.2 Lexical Mapping</h5><p><a href="#hexBinary" shape="rect">hexBinary</a>'s <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>
consists of strings of hex (hexadecimal) digits, two consecutive digits
representing each octet in the corresponding value (treating the octet
as the binary representation of a number between 0 and 255).&#160; For
example, '<code>0FB7</code>' is a <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> of the
two-octet value 00001111 10110111.</p><div class="block">More formally, the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of
<a href="#hexBinary" shape="rect">hexBinary</a> is the set of literals matching the <a href="#nt-hexBinary" shape="rect"><i>hexBinary</i></a> production.
<div class="defset">
<div class="defset-head">Lexical space of hexBinary</div>
<div class="prod">
<a name="nt-hexDigit" id="nt-hexDigit" shape="rect"></a><span class="lhs">[24]
&#160;
<i>hexDigit</i></span>&#160;::= [<code>0-9a-fA-F</code>]</div><div class="prod">
<a name="nt-hexOctet" id="nt-hexOctet" shape="rect"></a><span class="lhs">[25]
&#160;
<i>hexOctet</i></span>&#160;::= <a href="#nt-hexDigit" shape="rect"><i>hexDigit</i></a> <a href="#nt-hexDigit" shape="rect"><i>hexDigit</i></a></div><div class="prod">
<a name="nt-hexBinary" id="nt-hexBinary" shape="rect"></a><span class="lhs">[26]
&#160;
<i>hexBinary</i></span>&#160;::= <a href="#nt-hexOctet" shape="rect"><i>hexOctet</i></a>*</div></div>
</div><p>The set recognized by <a href="#nt-hexBinary" shape="rect"><i>hexBinary</i></a> is the same as that recognized by the regular
expression '<code>([0-9a-fA-F]{2})*</code>'.</p><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> of
<a href="#hexBinary" shape="rect">hexBinary</a> is <a href="#f-hexBinaryMap" shape="rect"><i><span class="arrow">&#183;</span>hexBinaryMap<span class="arrow">&#183;</span></i></a>.</p><p>The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> of
<a href="#hexBinary" shape="rect">hexBinary</a> is given formally in <a href="#f-hexBinaryCanonical" shape="rect"><i><span class="arrow">&#183;</span>hexBinaryCanonical<span class="arrow">&#183;</span></i></a>.</p></div><div class="div4">
<h5><a name="hexBinary-facets" id="hexBinary-facets" shape="rect"></a>3.3.15.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#hexBinary" shape="rect">hexBinary</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="hexBinary.whiteSpace" shape="rect" id="hexBinary.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#hexBinary" shape="rect">hexBinary</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#hexBinary" shape="rect">hexBinary</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="base64Binary" id="base64Binary" shape="rect"></a>3.3.16 base64Binary</h4><p><span class="termdef"><a name="dt-base64Binary" id="dt-base64Binary" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>base64Binary</b> represents arbitrary
Base64-encoded binary
data.&#160;
For <b>base64Binary</b> data the entire binary stream is encoded
using the Base64 Encoding
defined in <a href="#RFC3548" shape="rect">[RFC 3548]</a>, which is derived from the encoding
described in <a href="#RFC2045" shape="rect">[RFC 2045]</a>.</span></p><div class="div4">
<h5><a name="sec-vs-b46b" id="sec-vs-b46b" shape="rect"></a>3.3.16.1 Value Space</h5><p>The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<a href="#base64Binary" shape="rect">base64Binary</a> is the set of finite-length sequences of
zero or more
binary octets.&#160; The
length of a value is the number of octets.</p></div><div class="div4">
<h5><a name="sec-lex-b64b" id="sec-lex-b64b" shape="rect"></a>3.3.16.2 Lexical
Mapping</h5><p>The <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> of
<a href="#base64Binary" shape="rect">base64Binary</a>
values are limited to the 65 characters of the Base64 Alphabet defined in
<a href="#RFC3548" shape="rect">[RFC 3548]</a>,
i.e., <code>a-z</code>, <code>A-Z</code>,
<code>0-9</code>, the plus sign (+), the forward slash (/) and the
equal sign (=), together with
the space character
(#x20). No other characters are allowed.
</p><p>
For compatibility with older mail gateways, <a href="#RFC2045" shape="rect">[RFC 2045]</a>
suggests that Base64 data should have lines limited to at most 76
characters in length.&#160; This line-length limitation is not
required by <a href="#RFC3548" shape="rect">[RFC 3548]</a>
and is not mandated in the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> of
<a href="#base64Binary" shape="rect">base64Binary</a>
data.&#160; It
<span class="rfc2119">must not</span>
be enforced by XML Schema processors.</p><p>The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of
<a href="#base64Binary" shape="rect">base64Binary</a>
is the
set of literals which <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the
<a href="#base64Binary" shape="rect">base64Binary</a>production.</p><div class="block">
<div class="defset">
<div class="defset-head">Lexical space of base64Binary</div>
<div class="prod">
<a name="nt-Base64Binary" id="nt-Base64Binary" shape="rect"></a><span class="lhs">[27]
&#160;
<i>Base64Binary</i></span>&#160;::= (<a href="#nt-B64quad" shape="rect"><i>B64quad</i></a>* <a href="#nt-B64final" shape="rect"><i>B64final</i></a>)?</div><div class="prod">
<a name="nt-B64quad" id="nt-B64quad" shape="rect"></a><span class="lhs">[28]
&#160;
<i>B64quad</i></span>&#160;::= (<a href="#nt-B64" shape="rect"><i>B64</i></a> <a href="#nt-B64" shape="rect"><i>B64</i></a> <a href="#nt-B64" shape="rect"><i>B64</i></a>
<a href="#nt-B64" shape="rect"><i>B64</i></a>)
<div class="bnf_comment">/* <i class="com"><a href="#nt-B64quad" shape="rect"><i>B64quad</i></a> represents three octets of binary data.</i> */</div>
</div><div class="prod">
<a name="nt-B64final" id="nt-B64final" shape="rect"></a><span class="lhs">[29]
&#160;
<i>B64final</i></span>&#160;::= <a href="#nt-B64finalquad" shape="rect"><i>B64finalquad</i></a> | <a href="#nt-Padded16" shape="rect"><i>Padded16</i></a> | <a href="#nt-Padded8" shape="rect"><i>Padded8</i></a></div><div class="prod">
<a name="nt-B64finalquad" id="nt-B64finalquad" shape="rect"></a><span class="lhs">[30]
&#160;
<i>B64finalquad</i></span>&#160;::= (<a href="#nt-B64" shape="rect"><i>B64</i></a> <a href="#nt-B64" shape="rect"><i>B64</i></a> <a href="#nt-B64" shape="rect"><i>B64</i></a>
<a href="#nt-B64char" shape="rect"><i>B64char</i></a>)
<div class="bnf_comment">/* <i class="com"><a href="#nt-B64finalquad" shape="rect"><i>B64finalquad</i></a> represents three octets
of binary data without trailing space.</i> */</div>
</div><div class="prod">
<a name="nt-Padded16" id="nt-Padded16" shape="rect"></a><span class="lhs">[31]
&#160;
<i>Padded16</i></span>&#160;::= <a href="#nt-B64" shape="rect"><i>B64</i></a> <a href="#nt-B64" shape="rect"><i>B64</i></a> <a href="#nt-B16" shape="rect"><i>B16</i></a> '<code>=</code>'
<div class="bnf_comment">/* <i class="com"><a href="#nt-Padded16" shape="rect"><i>Padded16</i></a> represents a two-octet
at the end of the data.</i> */</div>
</div><div class="prod">
<a name="nt-Padded8" id="nt-Padded8" shape="rect"></a><span class="lhs">[32]
&#160;
<i>Padded8</i></span>&#160;::= <a href="#nt-B64" shape="rect"><i>B64</i></a> <a href="#nt-B04" shape="rect"><i>B04</i></a> '<code>=</code>' #x20? '<code>=</code>'
<div class="bnf_comment">/* <i class="com"><a href="#nt-Padded8" shape="rect"><i>Padded8</i></a> represents a single octet at the end of the data.</i> */</div>
</div><div class="prod">
<a name="nt-B64" id="nt-B64" shape="rect"></a><span class="lhs">[33]
&#160;
<i>B64</i></span>&#160;::= <a href="#nt-B64char" shape="rect"><i>B64char</i></a> #x20?</div><div class="prod">
<a name="nt-B64char" id="nt-B64char" shape="rect"></a><span class="lhs">[34]
&#160;
<i>B64char</i></span>&#160;::= [A-Za-z0-9+/]</div><div class="prod">
<a name="nt-B16" id="nt-B16" shape="rect"></a><span class="lhs">[35]
&#160;
<i>B16</i></span>&#160;::= <a href="#nt-B16char" shape="rect"><i>B16char</i></a> #x20?</div><div class="prod">
<a name="nt-B16char" id="nt-B16char" shape="rect"></a><span class="lhs">[36]
&#160;
<i>B16char</i></span>&#160;::= [AEIMQUYcgkosw048]
<div class="bnf_comment">/* <i class="com">Base64 characters whose bit-string value ends in '00'</i> */</div></div><div class="prod">
<a name="nt-B04" id="nt-B04" shape="rect"></a><span class="lhs">[37]
&#160;
<i>B04</i></span>&#160;::= <a href="#nt-B04char" shape="rect"><i>B04char</i></a> #x20?</div><div class="prod">
<a name="nt-B04char" id="nt-B04char" shape="rect"></a><span class="lhs">[38]
&#160;
<i>B04char</i></span>&#160;::= [AQgw]
<div class="bnf_comment">/* <i class="com">Base64 characters whose bit-string value ends in
'0000'</i> */</div></div></div>
</div><div class="block">
The <a href="#nt-Base64Binary" shape="rect"><i>Base64Binary</i></a> production is equivalent
to the following regular expression.
<blockquote class="shrink"><p>
<code>((([A-Za-z0-9+/] ?){4})*(([A-Za-z0-9+/] ?){3}[A-Za-z0-9+/]|([A-Za-z0-9+/] ?){2}[AEIMQUYcgkosw048] ?=|[A-Za-z0-9+/] ?[AQgw] ?= ?=))?</code>
</p></blockquote>
Note that each '<code>?</code>' except the last is preceded by a
single space character.</div><p>Note that this grammar requires the number of non-whitespace
characters in the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> to be a multiple of four, and
for equals signs to appear only at the end of the
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>;
literals
which do not meet these constraints
are not legal <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> of
<a href="#base64Binary" shape="rect">base64Binary</a>.</p><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> for
<a href="#base64Binary" shape="rect">base64Binary</a> is as given in
<a href="#RFC2045" shape="rect">[RFC 2045]</a> and <a href="#RFC3548" shape="rect">[RFC 3548]</a>.</p><div class="note"><div class="p"><b>Note:</b> The above definition of the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> is more restrictive than
that given in <a href="#RFC2045" shape="rect">[RFC 2045]</a> as regards whitespace &#8212;
and less restrictive than <a href="#RFC3548" shape="rect">[RFC 3548]</a>.
This is
not an issue in practice.&#160; Any string compatible with
either
RFC can occur in an element or attribute
validated by this type, because the <a href="#dt-whiteSpace" class="termref" shape="rect"><span class="arrow">&#183;</span>whiteSpace<span class="arrow">&#183;</span></a>
facet of this type is fixed to <b><i>collapse</i></b>, which means that all
leading and trailing whitespace will be stripped, and all internal
whitespace collapsed to single space characters, <em>before</em>
the above grammar is enforced. The
possibility of ignoring whitespace in Base64 data is foreseen in
clause 2.3 of <a href="#RFC3548" shape="rect">[RFC 3548]</a>, but for the reasons given there
this specification does not allow implementations to ignore
non-whitespace characters which are not in the Base64
Alphabet.</div></div><p>The canonical <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>
of a
<a href="#base64Binary" shape="rect">base64Binary</a>
data value is the Base64 encoding of the value which matches the
Canonical-base64Binary production in the following grammar:
</p><div class="block">
<div class="defset">
<div class="defset-head">Canonical representation of base64Binary</div>
<div class="prod">
<a name="nt-Canonical-base64Binary" id="nt-Canonical-base64Binary" shape="rect"></a><span class="lhs">[39]
&#160;
<i>Canonical-base64Binary</i></span>&#160;::= <a href="#nt-CanonicalQuad" shape="rect"><i>CanonicalQuad</i></a>* <a href="#nt-CanonicalPadded" shape="rect"><i>CanonicalPadded</i></a>?</div><div class="prod">
<a name="nt-CanonicalQuad" id="nt-CanonicalQuad" shape="rect"></a><span class="lhs">[40]
&#160;
<i>CanonicalQuad</i></span>&#160;::= <a href="#nt-B64char" shape="rect"><i>B64char</i></a> <a href="#nt-B64char" shape="rect"><i>B64char</i></a> <a href="#nt-B64char" shape="rect"><i>B64char</i></a> <a href="#nt-B64char" shape="rect"><i>B64char</i></a></div><div class="prod">
<a name="nt-CanonicalPadded" id="nt-CanonicalPadded" shape="rect"></a><span class="lhs">[41]
&#160;
<i>CanonicalPadded</i></span>&#160;::= <a href="#nt-B64char" shape="rect"><i>B64char</i></a> <a href="#nt-B64char" shape="rect"><i>B64char</i></a> <a href="#nt-B16char" shape="rect"><i>B16char</i></a> '<code>=</code>'
| <a href="#nt-B64char" shape="rect"><i>B64char</i></a> <a href="#nt-B04char" shape="rect"><i>B04char</i></a> '<code>==</code>'</div></div>
</div><p>That is, the <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>
of a <a href="#base64Binary" shape="rect">base64Binary</a> value is the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>
which maps to that value and contains no whitespace. The
<a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> for <a href="#base64Binary" shape="rect">base64Binary</a> is
thus the encoding algorithm for Base64 data given in <a href="#RFC2045" shape="rect">[RFC 2045]</a>
and <a href="#RFC3548" shape="rect">[RFC 3548]</a>, with the proviso that no
characters except those in the Base64 Alphabet are to be written
out.</p><div class="note"><div class="p"><b>Note:</b> For some values the <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> defined above does
not conform to <a href="#RFC2045" shape="rect">[RFC 2045]</a>, which requires breaking with
linefeeds at appropriate intervals. It
does conform with <a href="#RFC3548" shape="rect">[RFC 3548]</a>.</div></div><p>The length of a
<a href="#base64Binary" shape="rect">base64Binary</a>
value may be calculated from the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> by
removing whitespace and padding characters and performing the
calculation shown in the pseudo-code below:</p><p>
<code>
lex2&#160;&#160;&#160;:=&#160;killwhitespace(lexform)&#160;
&#160;&#160;--&#160;remove&#160;whitespace&#160;characters<br clear="none" />
lex3&#160;&#160;&#160;:=&#160;strip_equals(lex2)&#160;&#160;&#160;&#160;&#160;&#160;
&#160;&#160;--&#160;strip&#160;padding&#160;characters&#160;at&#160;end<br clear="none" />
length&#160;:=&#160;floor&#160;(length(lex3)&#160;*&#160;3&#160;/&#160;4)&#160;&#160;&#160;&#160;&#160;&#160;
&#160;&#160;--&#160;calculate&#160;length
</code>
</p><p>
Note on encoding:&#160; <a href="#RFC2045" shape="rect">[RFC 2045]</a> and
<a href="#RFC3548" shape="rect">[RFC 3548]</a> explicitly
reference US-ASCII encoding.&#160; However,
decoding of <b>base64Binary</b> data in an XML entity is to be performed on the
Unicode characters obtained after character encoding processing as specified by
<a href="#XML" shape="rect">[XML]</a>.
</p></div><div class="div4">
<h5><a name="base64Binary-facets" id="base64Binary-facets" shape="rect"></a>3.3.16.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#base64Binary" shape="rect">base64Binary</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="base64Binary.whiteSpace" shape="rect" id="base64Binary.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#base64Binary" shape="rect">base64Binary</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#base64Binary" shape="rect">base64Binary</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="anyURI" id="anyURI" shape="rect"></a>3.3.17 anyURI</h4><p><span class="termdef"><a name="dt-anyURI" id="dt-anyURI" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>anyURI</b> represents an
Internationalized Resource Identifier Reference
(IRI).&#160; An <b>anyURI</b> value can be absolute or relative, and may
have an optional fragment identifier (i.e., it may be
an
IRI Reference).&#160; This type should be used
when
the value fulfills the role of
an IRI,
as defined in <a href="#RFC3987" shape="rect">[RFC 3987]</a> or its successor(s) in the IETF
Standards Track.</span></p><div class="note"><div class="p"><b>Note:</b> IRIs may be used to locate resources
or simply to identify them. In the case where they are used to locate
resources using a URI, applications should use
the mapping from
<a href="#anyURI" shape="rect">anyURI</a>
values to URIs given
by the
reference escaping procedure defined in
<a href="#LEIRIs" shape="rect">[LEIRI]</a> and in
Section
3.1 <a href="http://www.ietf.org/rfc/rfc3987.txt" shape="rect">Mapping
of IRIs to URIs</a> of <a href="#RFC3987" shape="rect">[RFC 3987]</a>
or its successor(s) in the IETF Standards Track.&#160;
This means that a wide range of internationalized resource identifiers
can be specified when an
<a href="#anyURI" shape="rect">anyURI</a>
is called for, and still be understood as URIs per
<a href="#RFC3986" shape="rect">[RFC 3986]</a>
and its successor(s).</div></div><div class="div4">
<h5><a name="anyURI-vs" id="anyURI-vs" shape="rect"></a>3.3.17.1 Value Space</h5><p>The value space of <a href="#anyURI" shape="rect">anyURI</a> is the set of finite-length
sequences of zero or more
<a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">character</a>s (as defined in
<a href="#XML" shape="rect">[XML]</a>) that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the
<a href="http://www.w3.org/TR/xml11/#NT-Char" shape="rect">Char</a> production from <a href="#XML" shape="rect">[XML]</a>.</p></div><div class="div4">
<h5><a name="anyURI-lexical-representation" id="anyURI-lexical-representation" shape="rect"></a>3.3.17.2 Lexical
Mapping</h5><p>The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of
<a href="#anyURI" shape="rect">anyURI</a>
is the set of finite-length
sequences of zero or more
<a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">character</a>s (as defined in
<a href="#XML" shape="rect">[XML]</a>) that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the
<a href="http://www.w3.org/TR/xml11/#NT-Char" shape="rect">Char</a> production from <a href="#XML" shape="rect">[XML]</a>.</p><div class="note"><div class="p"><b>Note:</b> For an <a href="#anyURI" shape="rect">anyURI</a> value to be
usable in practice as an IRI, the result of applying to it
the algorithm defined in Section 3.1 of <a href="#RFC3987" shape="rect">[RFC 3987]</a>
should
be a string which is a legal URI according
to <a href="#RFC3986" shape="rect">[RFC 3986]</a>. (This is true at the time this document is published;
if in the future
<a href="#RFC3987" shape="rect">[RFC 3987]</a> and <a href="#RFC3986" shape="rect">[RFC 3986]</a> are replaced by other specifications
in the IETF Standards Track, the relevant constraints will be those
imposed by those successor specifications.)</div><div class="p">Each URI scheme imposes specialized syntax rules
for URIs in that scheme, including restrictions on the syntax of
allowed fragment identifiers. Because it is impractical for processors
to check that a value is a context-appropriate URI reference,
neither the syntactic constraints defined by the definitions of individual
schemes nor the generic syntactic constraints defined by
<a href="#RFC3987" shape="rect">[RFC 3987]</a> and <a href="#RFC3986" shape="rect">[RFC 3986]</a> and their
successors are part of this datatype as defined here.
Applications which depend on <a href="#anyURI" shape="rect">anyURI</a> values
being legal according to the rules of
the relevant specifications
should make arrangements to check values against the appropriate
definitions of IRI, URI, and specific schemes.</div></div><div class="note"><div class="p"><b>Note:</b> Spaces are, in principle, allowed in the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of
<a href="#anyURI" shape="rect">anyURI</a>,
however, their use is highly discouraged
(unless they are encoded by '<code>%20</code>').</div></div><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> for <a href="#anyURI" shape="rect">anyURI</a> is
the identity mapping.</p><div class="note"><div class="p"><b>Note:</b> The definitions of URI in the current
IETF specifications define certain URIs as equivalent to each other.
Those equivalences are not part of this datatype as defined here:
if two "equivalent" URIs or IRIs are different character
sequences, they map to different values in this datatype.</div></div></div><div class="div4">
<h5><a name="anyURI-facets" id="anyURI-facets" shape="rect"></a>3.3.17.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#anyURI" shape="rect">anyURI</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="anyURI.whiteSpace" shape="rect" id="anyURI.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#anyURI" shape="rect">anyURI</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#anyURI" shape="rect">anyURI</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="QName" id="QName" shape="rect"></a>3.3.18 QName</h4><p><span class="termdef"><a name="dt-QName" id="dt-QName" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>QName</b> represents
<a href="http://www.w3.org/TR/xml-names11/#dt-qualname" shape="rect">XML qualified
names</a>.
The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <b>QName</b> is the set of
tuples {<a href="http://www.w3.org/TR/xml-names11/#dt-NSName" shape="rect">namespace name</a>,
<a href="http://www.w3.org/TR/xml-names11/#dt-localname" shape="rect">local part</a>},
where <a href="http://www.w3.org/TR/xml-names11/#dt-NSName" shape="rect">namespace name</a>
is an <a href="#anyURI" shape="rect">anyURI</a>
and <a href="http://www.w3.org/TR/xml-names11/#dt-localname" shape="rect">local part</a> is
an <a href="#NCName" shape="rect">NCName</a>.
The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <b>QName</b> is the set
of strings that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the <a href="http://www.w3.org/TR/xml-names11/#NT-QName" shape="rect">
QName</a> production of <a href="#XMLNS" shape="rect">[Namespaces in XML]</a>.</span></p><p>It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether an
implementation of this specification supports the
<a href="http://www.w3.org/TR/xml-names11/#NT-QName" shape="rect">QName</a> production from
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>, or that from
<a href="#XMLNS1.0" shape="rect">[Namespaces in XML 1.0]</a>, or both. See
<a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</p><p>
The mapping from lexical space to value space for a particular
<a href="#QName" shape="rect">QName</a>
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> depends on the namespace bindings in scope where the literal occurs.
</p><p>When
<a href="#QName" shape="rect">QName</a>s
appear in an XML context, the bindings to be used in
the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> are those in the <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[in-scope namespaces]</a> property of the
relevant element.
When this datatype is used in a non-XML host language,
the host language <span class="rfc2119">must</span> specify what namespace bindings
are to be used.</p><p>
The host language, whether XML-based or otherwise, <span class="rfc2119">may</span> specify whether
unqualified names are bound to the default namespace (if any)
or not; the host language may also place this under user control.
If the host language does not specify otherwise,
unqualified names are bound to the default namespace.
</p><div class="note"><div class="p"><b>Note:</b> The default treatment of
unqualified names parallels that specified in
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a> for element names (as opposed to that specified
for attribute names).
</div></div><div class="note"><div class="p"><b>Note:</b>
The mapping between <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> in the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> and
values in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<a href="#QName" shape="rect">QName</a>
depends on the set of
namespace declarations
in scope for the context
in which
<a href="#QName" shape="rect">QName</a>
is used.&#160;
</div><div class="p">Because the lexical representations available for
any value of type <a href="#QName" shape="rect">QName</a> vary with context, no
<a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> is defined for
<a href="#QName" shape="rect">QName</a>
in this specification.</div></div><div class="div4">
<h5><a name="QName-facets" id="QName-facets" shape="rect"></a>3.3.18.1
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#QName" shape="rect">QName</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="QName.whiteSpace" shape="rect" id="QName.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#QName" shape="rect">QName</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#QName" shape="rect">QName</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="NOTATION" id="NOTATION" shape="rect"></a>3.3.19 NOTATION</h4><p><span class="termdef"><a name="dt-NOTATION" id="dt-NOTATION" title="" shape="rect">[Definition:]&#160;&#160;</a><b>NOTATION</b>
represents the <a href="http://www.w3.org/TR/xml11/#NT-NotationType" class="nt" shape="rect">NOTATION</a>
attribute
type from <a href="#XML" shape="rect">[XML]</a>.
The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
of <b>NOTATION</b> is the set of <a href="#QName" shape="rect">QName</a>s
of notations declared in the current schema.
The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <b>NOTATION</b> is the set
of all names of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-notation" shape="rect">notations</a>
declared in the current schema (in the form of
<a href="#QName" shape="rect">QName</a>s).</span></p><div class="note"><div class="p"><b>Note:</b> Because its <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> depends on the notion of a
"current schema", as instantiated for example
by <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>, the <a href="#NOTATION" shape="rect">NOTATION</a> datatype is
unsuitable for use in other contexts which lack the notion of a
current schema.
</div></div><p>
The lexical mapping rules for <a href="#NOTATION" shape="rect">NOTATION</a> are as given for
<a href="#QName" shape="rect">QName</a> in
<a href="#QName" shape="rect">QName (&#167;3.3.18)</a>.
</p><div class="constraintnote"><a id="enumeration-required-notation" name="enumeration-required-notation" shape="rect"></a><b>Schema Component Constraint: enumeration facet value required for NOTATION</b><br clear="none" /><div class="constraint"><div class="p">It is (with one exception) an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> for
<a href="#NOTATION" shape="rect">NOTATION</a> to be used
directly to validate a literal as described in
<a href="#cvc-datatype-valid" shape="rect">Datatype Valid (&#167;4.1.4)</a>:
only datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#NOTATION" shape="rect">NOTATION</a> by specifying
a value for <a href="#dt-enumeration" class="termref" shape="rect"><span class="arrow">&#183;</span>enumeration<span class="arrow">&#183;</span></a> can be used to validate literals.</div><div class="p">
The exception is that in the <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derivation<span class="arrow">&#183;</span></a> of a new type the
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> used to enumerate the allowed values <span class="rfc2119">may</span> be (and in
the context of [XSD 1.1 Part 1: Structures] will be)
validated directly against <a href="#NOTATION" shape="rect">NOTATION</a>; this amounts to
verifying that the value is a <a href="#QName" shape="rect">QName</a> and that the
<a href="#QName" shape="rect">QName</a> is the
name of a <b>NOTATION</b> declared in the current schema.
</div></div></div><p>For compatibility (see <a href="#terminology" shape="rect">Terminology (&#167;1.6)</a>)
<a href="#NOTATION" shape="rect">NOTATION</a>
should be used only on attributes
and should only be used in schemas with no
target namespace.</p><div class="block">
<div class="note"><div class="p"><b>Note:</b> Because the lexical representations available for any given value
of <a href="#NOTATION" shape="rect">NOTATION</a> vary with context, this specification defines
no <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for <a href="#NOTATION" shape="rect">NOTATION</a> values.</div></div>
</div><div class="div4">
<h5><a name="NOTATION-facets" id="NOTATION-facets" shape="rect"></a>3.3.19.1
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#NOTATION" shape="rect">NOTATION</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" name="NOTATION.whiteSpace" shape="rect" id="NOTATION.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#NOTATION" shape="rect">NOTATION</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#NOTATION" shape="rect">NOTATION</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div><p>
The use of <a href="#dt-length" class="termref" shape="rect"><span class="arrow">&#183;</span>length<span class="arrow">&#183;</span></a>, <a href="#dt-minLength" class="termref" shape="rect"><span class="arrow">&#183;</span>minLength<span class="arrow">&#183;</span></a> and <a href="#dt-maxLength" class="termref" shape="rect"><span class="arrow">&#183;</span>maxLength<span class="arrow">&#183;</span></a>
on <a href="#NOTATION" shape="rect">NOTATION</a> or
datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#NOTATION" shape="rect">NOTATION</a> is
deprecated.&#160; Future versions of this specification may
remove these facets for this datatype.
</p></div></div></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#built-in-primitive-datatypes" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="ordinary-built-ins" id="ordinary-built-ins" shape="rect"></a>3.4 Other Built-in Datatypes</h3><div class="localToc">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.1 <a href="#normalizedString" shape="rect">normalizedString</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.1.1 <a href="#normalizedString-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.1.2 <a href="#normalizedString-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.2 <a href="#token" shape="rect">token</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.2.1 <a href="#token-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.2.2 <a href="#token-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.3 <a href="#language" shape="rect">language</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.3.1 <a href="#language-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.4 <a href="#NMTOKEN" shape="rect">NMTOKEN</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.4.1 <a href="#NMTOKEN-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.4.2 <a href="#NMTOKEN-derived-types" shape="rect">Related datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.5 <a href="#NMTOKENS" shape="rect">NMTOKENS</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.5.1 <a href="#NMTOKENS-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.6 <a href="#Name" shape="rect">Name</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.6.1 <a href="#Name-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.6.2 <a href="#Name-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.7 <a href="#NCName" shape="rect">NCName</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.7.1 <a href="#NCName-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.7.2 <a href="#NCName-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.8 <a href="#ID" shape="rect">ID</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.8.1 <a href="#ID-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.9 <a href="#IDREF" shape="rect">IDREF</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.9.1 <a href="#IDREF-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.9.2 <a href="#IDREF-derived-types" shape="rect">Related datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.10 <a href="#IDREFS" shape="rect">IDREFS</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.10.1 <a href="#IDREFS-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.11 <a href="#ENTITY" shape="rect">ENTITY</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.11.1 <a href="#ENTITY-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.11.2 <a href="#ENTITY-derived-types" shape="rect">Related datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.12 <a href="#ENTITIES" shape="rect">ENTITIES</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.12.1 <a href="#ENTITIES-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.13 <a href="#integer" shape="rect">integer</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.13.1 <a href="#integer-lexical-representation" shape="rect">Lexical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.13.2 <a href="#integer-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.13.3 <a href="#integer-facets" shape="rect">Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.13.4 <a href="#integer-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.14 <a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.14.1 <a href="#nonPositiveInteger-lexical-representation" shape="rect">Lexical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.14.2 <a href="#nonPositiveInteger-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.14.3 <a href="#nonPositiveInteger-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.14.4 <a href="#nonPositiveInteger-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.15 <a href="#negativeInteger" shape="rect">negativeInteger</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.15.1 <a href="#negativeInteger-lexical-representation" shape="rect">Lexical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.15.2 <a href="#negativeInteger-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.15.3 <a href="#negativeInteger-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.16 <a href="#long" shape="rect">long</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.16.1 <a href="#long-lexical-representation" shape="rect">Lexical Representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.16.2 <a href="#long-canonical-repr" shape="rect">Canonical Representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.16.3 <a href="#long-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.16.4 <a href="#long-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.17 <a href="#int" shape="rect">int</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.17.1 <a href="#int-lexical-representation" shape="rect">Lexical Representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.17.2 <a href="#int-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.17.3 <a href="#int-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.17.4 <a href="#int-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.18 <a href="#short" shape="rect">short</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.18.1 <a href="#short-lexical-representation" shape="rect">Lexical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.18.2 <a href="#short-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.18.3 <a href="#short-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.18.4 <a href="#short-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.19 <a href="#byte" shape="rect">byte</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.19.1 <a href="#byte-lexical-representation" shape="rect">Lexical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.19.2 <a href="#byte-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.19.3 <a href="#byte-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.20 <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.20.1 <a href="#nonNegativeInteger-lexical-representation" shape="rect">Lexical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.20.2 <a href="#nonNegativeInteger-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.20.3 <a href="#nonNegativeInteger-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.20.4 <a href="#nonNegativeInteger-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.21 <a href="#unsignedLong" shape="rect">unsignedLong</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.21.1 <a href="#unsignedLong-lexical-representation" shape="rect">Lexical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.21.2 <a href="#unsignedLong-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.21.3 <a href="#unsignedLong-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.21.4 <a href="#unsignedLong-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.22 <a href="#unsignedInt" shape="rect">unsignedInt</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.22.1 <a href="#unsignedInt-lexical-representation" shape="rect">Lexical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.22.2 <a href="#unsignedInt-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.22.3 <a href="#unsignedInt-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.22.4 <a href="#unsignedInt-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.23 <a href="#unsignedShort" shape="rect">unsignedShort</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.23.1 <a href="#unsignedShort-lexical-representation" shape="rect">Lexical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.23.2 <a href="#unsignedShort-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.23.3 <a href="#unsignedShort-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.23.4 <a href="#unsignedShort-derived-types" shape="rect">Derived datatypes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.24 <a href="#unsignedByte" shape="rect">unsignedByte</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.24.1 <a href="#unsignedByte-lexical-representation" shape="rect">Lexical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.24.2 <a href="#unsignedByte-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.24.3 <a href="#unisngedByte-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.25 <a href="#positiveInteger" shape="rect">positiveInteger</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.25.1 <a href="#positiveInteger-lexical-representation" shape="rect">Lexical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.25.2 <a href="#positiveInteger-canonical-repr" shape="rect">Canonical representation</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.25.3 <a href="#positiveInteger-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.26 <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.26.1 <a href="#yearMonthDuration-lexical-mapping" shape="rect">The Lexical Mapping</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.26.2 <a href="#YearMonthDuration-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.27 <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.27.1 <a href="#dayTimeDuration-lexical-mapping" shape="rect">The Lexical Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.27.2 <a href="#dayTimeDuration-facets" shape="rect">
Facets</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.28 <a href="#dateTimeStamp" shape="rect">dateTimeStamp</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.28.1 <a href="#dateTimeStamp-lexical-mapping" shape="rect">The Lexical Space</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;3.4.28.2 <a href="#dateTimeStamp-facets" shape="rect">
Facets</a><br clear="none" />
</div><p>
This section gives conceptual definitions for all
<a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
datatypes defined by this specification. The XML representation used to define
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
datatypes (whether
<a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> or <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>) is
given in <a href="#xr-defn" shape="rect">XML Representation of Simple Type Definition Schema Components (&#167;4.1.2)</a>
and the complete
definitions of the <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
datatypes are provided in the appendix <a href="#schema" shape="rect">Schema for Schema Documents (Datatypes)
(normative) (&#167;A)</a>.
</p><div class="div3">
<h4><a name="normalizedString" id="normalizedString" shape="rect"></a>3.4.1 normalizedString</h4><p>
<span class="termdef"><a name="dt-normalizedString" id="dt-normalizedString" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>normalizedString</b>
represents white space normalized strings.&#160;
The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <b>normalizedString</b> is the
set of strings that do not
contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters.&#160;
The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <b>normalizedString</b> is the
set of strings that do not
contain the carriage return (#xD),
line feed (#xA)
nor tab (#x9) characters.&#160;
The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>normalizedString</b> is <a href="#string" shape="rect">string</a>.
</span>
</p><div class="div4">
<h5><a name="normalizedString-facets" id="normalizedString-facets" shape="rect"></a>3.4.1.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#normalizedString" shape="rect">normalizedString</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-whiteSpace" name="normalizedString.whiteSpace" shape="rect" id="normalizedString.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>replace</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#normalizedString" shape="rect">normalizedString</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#normalizedString" shape="rect">normalizedString</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="normalizedString-derived-types" id="normalizedString-derived-types" shape="rect"></a>3.4.1.2 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#normalizedString" shape="rect">normalizedString</a></p><ul><li><a href="#token" shape="rect">token</a></li></ul></div></div><div class="div3">
<h4><a name="token" id="token" shape="rect"></a>3.4.2 token</h4><p>
<span class="termdef"><a name="dt-token" id="dt-token" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>token</b>
represents tokenized strings.
The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <b>token</b> is the
set of strings that do not
contain the
carriage return (#xD),
line feed (#xA) nor tab (#x9) characters, that have no
leading or trailing spaces (#x20) and that have no internal sequences
of two or more spaces.
The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <b>token</b> is the
set of strings that do not contain the
carriage return (#xD),
line feed (#xA) nor tab (#x9) characters, that have no
leading or trailing spaces (#x20) and that have no internal sequences
of two or more spaces.
The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>token</b> is <a href="#normalizedString" shape="rect">normalizedString</a>.
</span>
</p><div class="div4">
<h5><a name="token-facets" id="token-facets" shape="rect"></a>3.4.2.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#token" shape="rect">token</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-whiteSpace" name="token.whiteSpace" shape="rect" id="token.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#token" shape="rect">token</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#token" shape="rect">token</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="token-derived-types" id="token-derived-types" shape="rect"></a>3.4.2.2 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatypes are
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#token" shape="rect">token</a></p><ul><li><a href="#language" shape="rect">language</a></li><li><a href="#NMTOKEN" shape="rect">NMTOKEN</a></li><li><a href="#Name" shape="rect">Name</a></li></ul></div></div><div class="div3">
<h4><a name="language" id="language" shape="rect"></a>3.4.3 language</h4><div class="block"><span class="termdef"><a name="dt-language" id="dt-language" title="" shape="rect">[Definition:]&#160;&#160;</a><b>language</b>
represents formal
natural language identifiers,
as defined
by <a href="#BCP47" shape="rect">[BCP 47]</a>
(currently represented by
<a href="#RFC4646" shape="rect">[RFC 4646]</a> and
<a href="#RFC4647" shape="rect">[RFC 4647]</a>)
or its successor(s).
</span>
The
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of
<a href="#language" shape="rect">language</a>
are
the set of all strings that conform to the pattern
<blockquote><blockquote><p><code>[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*</code></p></blockquote></blockquote>
This is the set of strings
accepted by the grammar given in
<a href="#RFC3066" shape="rect">[RFC 3066]</a>,
which is now obsolete; the current specification of language
codes is more restrictive.&#160; The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of
<a href="#language" shape="rect">language</a>
is <a href="#token" shape="rect">token</a>.
</div><div class="note"><div class="p"><b>Note:</b> The regular expression above provides the only normative
constraint on the lexical and value spaces of this type. The
additional constraints imposed on language identifiers by
<a href="#BCP47" shape="rect">[BCP 47]</a>
and its successor(s), and in particular their requirement that language
codes be registered with IANA or ISO if not given in ISO 639, are
not part of this datatype as defined here.</div></div><div class="note"><div class="p"><b>Note:</b> <a href="#BCP47" shape="rect">[BCP 47]</a> specifies
that language codes "are to be treated as case insensitive; there
exist conventions for capitalization of some of
the
subtags, but these MUST NOT be taken
to carry meaning."
Since the <a href="#language" shape="rect">language</a> datatype is
derived from <a href="#string" shape="rect">string</a>, it inherits from
<a href="#string" shape="rect">string</a> a one-to-one mapping from lexical
representations to values. The literals '<code>MN</code>' and
'<code>mn</code>' (for
Mongolian)
therefore correspond to distinct values and
have distinct canonical forms. Users of this specification should be
aware of this fact, the consequence of which is that the
case-insensitive treatment of language values prescribed by
<a href="#BCP47" shape="rect">[BCP 47]</a>
does not follow from the definition of
this datatype given here; applications which require
case-insensitivity
should make appropriate adjustments.</div></div><div class="note"><a name="xml.lang.and.language" id="xml.lang.and.language" shape="rect"></a><div class="p"><b>Note:</b> The empty string is not a member of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
of <a href="#language" shape="rect">language</a>. Some constructs which normally
take language codes as their values, however, also allow the
empty string. The attribute <code>xml:lang</code> defined by
<a href="#XML" shape="rect">[XML]</a> is one example; there, the empty string
overrides a value which would otherwise be inherited, but
without specifying a new value.</div><div class="p">One way to define the desired set of possible values is
illustrated by the schema document for the XML namespace
at <a href="http://www.w3.org/2001/xml.xsd" shape="rect">http://www.w3.org/2001/xml.xsd</a>, which defines the
attribute <code>xml:lang</code> as having a type which is a union
of <a href="#language" shape="rect">language</a> and an anonymous type whose
only value is the empty string:<pre xml:space="preserve">
&lt;xs:attribute name="lang"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation&gt;
See RFC 3066 at http://www.ietf.org/rfc/rfc3066.txt
and the IANA registry at
http://www.iana.org/assignments/lang-tag-apps.htm for
further information.
The union allows for the 'un-declaration' of xml:lang with
the empty string.
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:simpleType&gt;
&lt;xs:union memberTypes="xs:language"&gt;
&lt;xs:simpleType&gt;
&lt;xs:restriction base="xs:string"&gt;
&lt;xs:enumeration value=""/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;/xs:union&gt;
&lt;/xs:simpleType&gt;
&lt;/xs:attribute&gt;
</pre></div></div><div class="div4">
<h5><a name="language-facets" id="language-facets" shape="rect"></a>3.4.3.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#language" shape="rect">language</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" name="language.pattern" shape="rect" id="language.pattern">pattern</a><span class="normal"><span class="normal"> = <b><i>[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*</i></b></span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#language" shape="rect">language</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#language" shape="rect">language</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="NMTOKEN" id="NMTOKEN" shape="rect"></a>3.4.4 NMTOKEN</h4><p><span class="termdef"><a name="dt-NMTOKEN" id="dt-NMTOKEN" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>NMTOKEN</b> represents
the <a href="http://www.w3.org/TR/xml11/#NT-TokenizedType" shape="rect">NMTOKEN attribute type</a>
from <a href="#XML" shape="rect">[XML]</a>. The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<b>NMTOKEN</b> is the set of tokens that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a>
the <a href="http://www.w3.org/TR/xml11/#NT-Nmtoken" shape="rect">Nmtoken</a> production in
<a href="#XML" shape="rect">[XML]</a>. The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of
<b>NMTOKEN</b> is the set of strings that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a>
the <a href="http://www.w3.org/TR/xml11/#NT-Nmtoken" shape="rect">Nmtoken</a> production in
<a href="#XML" shape="rect">[XML]</a>.&#160; The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of
<b>NMTOKEN</b> is <a href="#token" shape="rect">token</a>.
</span></p><p>It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether an
implementation of this specification supports the
<a href="http://www.w3.org/TR/xml11/#NT-Nmtoken" shape="rect">NMTOKEN</a> production from
<a href="#XML" shape="rect">[XML]</a>, or that from
<a href="#XML1.0" shape="rect">[XML 1.0]</a>, or both. See
<a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.</p><p>For compatibility (see <a href="#terminology" shape="rect">Terminology (&#167;1.6)</a>
<a href="#NMTOKEN" shape="rect">NMTOKEN</a>
should be used only on attributes.</p><div class="div4">
<h5><a name="NMTOKEN-facets" id="NMTOKEN-facets" shape="rect"></a>3.4.4.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#NMTOKEN" shape="rect">NMTOKEN</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" name="NMTOKEN.pattern" shape="rect" id="NMTOKEN.pattern">pattern</a><span class="normal"><span class="normal"> = <b><i>\c+</i></b></span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#NMTOKEN" shape="rect">NMTOKEN</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#NMTOKEN" shape="rect">NMTOKEN</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="NMTOKEN-derived-types" id="NMTOKEN-derived-types" shape="rect"></a>3.4.4.2 Related datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>
from
<a href="#NMTOKEN" shape="rect">NMTOKEN</a></p><ul><li><a href="#NMTOKENS" shape="rect">NMTOKENS</a></li></ul></div></div><div class="div3">
<h4><a name="NMTOKENS" id="NMTOKENS" shape="rect"></a>3.4.5 NMTOKENS</h4><p><span class="termdef"><a name="dt-NMTOKENS" id="dt-NMTOKENS" title="" shape="rect">[Definition:]&#160;&#160;</a><b>NMTOKENS</b>
represents the <a href="http://www.w3.org/TR/xml11/#NT-TokenizedType" shape="rect">NMTOKENS attribute
type</a> from <a href="#XML" shape="rect">[XML]</a>. The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
of <b>NMTOKENS</b> is the set of finite, non-zero-length sequences of
<a href="#dt-NMTOKEN" class="termref" shape="rect"><span class="arrow">&#183;</span>NMTOKEN<span class="arrow">&#183;</span></a>s.&#160; The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>
of <b>NMTOKENS</b> is the set of space-separated lists of tokens,
of which each token is in the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of
<a href="#NMTOKEN" shape="rect">NMTOKEN</a>.&#160; The <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> of
<b>NMTOKENS</b> is <a href="#NMTOKEN" shape="rect">NMTOKEN</a>.
<a href="#NMTOKENS" shape="rect">NMTOKENS</a> is derived
from <a href="#dt-anySimpleType" class="termref" shape="rect"><span class="arrow">&#183;</span><code>anySimpleType</code><span class="arrow">&#183;</span></a> in two steps: an anonymous list type
is defined, whose <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> is <a href="#NMTOKEN" shape="rect">NMTOKEN</a>; this is
the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <a href="#NMTOKENS" shape="rect">NMTOKENS</a>, which restricts
its value space to lists with at least one item.
</span></p><p>
For compatibility (see <a href="#terminology" shape="rect">Terminology (&#167;1.6)</a>)
<a href="#NMTOKENS" shape="rect">NMTOKENS</a>
should be used only on attributes.
</p><div class="div4">
<h5><a name="NMTOKENS-facets" id="NMTOKENS-facets" shape="rect"></a>3.4.5.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#NMTOKENS" shape="rect">NMTOKENS</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-minLength" name="NMTOKENS.minLength" shape="rect" id="NMTOKENS.minLength">minLength</a><span class="normal"><span class="normal"> = <b><i>1</i></b></span></span></li><li><a href="#rf-whiteSpace" name="NMTOKENS.whiteSpace" shape="rect" id="NMTOKENS.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#NMTOKENS" shape="rect">NMTOKENS</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#NMTOKENS" shape="rect">NMTOKENS</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="Name" id="Name" shape="rect"></a>3.4.6 Name</h4><p>
<span class="termdef"><a name="dt-Name" id="dt-Name" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>Name</b>
represents <a href="http://www.w3.org/TR/xml11/#dt-name" shape="rect">XML Names</a>.
The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <b>Name</b> is
the set of all strings which <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the
<a href="http://www.w3.org/TR/xml11/#NT-Name" shape="rect">Name</a> production of
<a href="#XML" shape="rect">[XML]</a>.&#160; The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of
<b>Name</b> is the set of all strings which <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a>
the <a href="http://www.w3.org/TR/xml11/#NT-Name" shape="rect">Name</a> production of
<a href="#XML" shape="rect">[XML]</a>. The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>Name</b>
is <a href="#token" shape="rect">token</a>.
</span>
</p><p>It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether an
implementation of this specification supports the <a href="http://www.w3.org/TR/xml11/#NT-Name" shape="rect">Name</a> production from
<a href="#XML" shape="rect">[XML]</a>, or that from
<a href="#XML1.0" shape="rect">[XML 1.0]</a>, or both. See
<a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</p><div class="div4">
<h5><a name="Name-facets" id="Name-facets" shape="rect"></a>3.4.6.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#Name" shape="rect">Name</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" name="Name.pattern" shape="rect" id="Name.pattern">pattern</a><span class="normal"><span class="normal"> = <b><i>\i\c*</i></b></span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#Name" shape="rect">Name</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#Name" shape="rect">Name</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="Name-derived-types" id="Name-derived-types" shape="rect"></a>3.4.6.2 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#Name" shape="rect">Name</a></p><ul><li><a href="#NCName" shape="rect">NCName</a></li></ul></div></div><div class="div3">
<h4><a name="NCName" id="NCName" shape="rect"></a>3.4.7 NCName</h4><p>
<span class="termdef"><a name="dt-NCName" id="dt-NCName" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>NCName</b> represents XML
"non-colonized" Names.&#160; The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<b>NCName</b> is the set of all strings which <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a>
the <a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production of
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>.&#160; The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of
<b>NCName</b> is the set of all strings which <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a>
the <a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production of
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>.&#160; The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of
<b>NCName</b> is <a href="#Name" shape="rect">Name</a>.
</span>
</p><p>It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether an
implementation of this specification supports the <a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production from
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>, or that from
<a href="#XMLNS1.0" shape="rect">[Namespaces in XML 1.0]</a>, or both. See
<a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</p><div class="div4">
<h5><a name="NCName-facets" id="NCName-facets" shape="rect"></a>3.4.7.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#NCName" shape="rect">NCName</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" name="NCName.pattern" shape="rect" id="NCName.pattern">pattern</a><span class="normal"><span class="normal"> = <b><i>\i\c* &#8745; [\i-[:]][\c-[:]]*</i></b></span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#NCName" shape="rect">NCName</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#NCName" shape="rect">NCName</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="NCName-derived-types" id="NCName-derived-types" shape="rect"></a>3.4.7.2 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatypes are
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#NCName" shape="rect">NCName</a></p><ul><li><a href="#ID" shape="rect">ID</a></li><li><a href="#IDREF" shape="rect">IDREF</a></li><li><a href="#ENTITY" shape="rect">ENTITY</a></li></ul></div></div><div class="div3">
<h4><a name="ID" id="ID" shape="rect"></a>3.4.8 ID</h4><p><span class="termdef"><a name="dt-ID" id="dt-ID" title="" shape="rect">[Definition:]&#160;&#160;</a><b>ID</b>
represents the
<a href="http://www.w3.org/TR/xml11/#NT-TokenizedType" shape="rect">ID attribute type</a> from
<a href="#XML" shape="rect">[XML]</a>.&#160; The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<b>ID</b> is the set of all strings that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a>
the <a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production in
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>.&#160; The
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <b>ID</b> is the set of all
strings that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the
<a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production in
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>.
The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>ID</b> is <a href="#NCName" shape="rect">NCName</a>.
</span></p><div class="note"><div class="p"><b>Note:</b> It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether an
implementation of this specification supports
the <a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production from
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>, or that from
<a href="#XMLNS1.0" shape="rect">[Namespaces in XML 1.0]</a>, or both. See
<a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.</div></div><p>For compatibility (see <a href="#terminology" shape="rect">Terminology (&#167;1.6)</a>),
<a href="#ID" shape="rect">ID</a>
should be used only on attributes.</p><div class="note"><div class="p"><b>Note:</b> Uniqueness of items validated as <a href="#ID" shape="rect">ID</a> is not
part of this datatype as defined here.
When this specification is used in conjunction with
<a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>, uniqueness is enforced at a
different level, not as part of datatype validity;
see <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#cvc-id" shape="rect">Validation Rule: Validation Root Valid (ID/IDREF)</a>
in <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.</div></div><div class="div4">
<h5><a name="ID-facets" id="ID-facets" shape="rect"></a>3.4.8.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#ID" shape="rect">ID</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>\i\c* &#8745; [\i-[:]][\c-[:]]*</i></b></span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#ID" shape="rect">ID</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#ID" shape="rect">ID</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="IDREF" id="IDREF" shape="rect"></a>3.4.9 IDREF</h4><p>
<span class="termdef"><a name="dt-IDREF" id="dt-IDREF" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>IDREF</b> represents the
<a href="http://www.w3.org/TR/xml11/#NT-TokenizedType" shape="rect">IDREF attribute type</a> from
<a href="#XML" shape="rect">[XML]</a>.&#160; The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<b>IDREF</b> is the set of all strings that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a>
the <a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production in
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>.&#160; The
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <b>IDREF</b> is the set of
strings that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the
<a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production in
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>.
The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>IDREF</b> is <a href="#NCName" shape="rect">NCName</a>.
</span>
</p><div class="note"><div class="p"><b>Note:</b> It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether an
implementation of this specification supports
the <a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production from
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>, or that from
<a href="#XMLNS1.0" shape="rect">[Namespaces in XML 1.0]</a>, or both. See
<a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</div></div><p>
For compatibility (see <a href="#terminology" shape="rect">Terminology (&#167;1.6)</a>) this datatype
should be used only on attributes.
</p><div class="note"><div class="p"><b>Note:</b> Existence of referents for items validated as
<a href="#IDREF" shape="rect">IDREF</a> is not part of this
datatype as defined here.
When this specification is used in conjunction with
<a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>, referential integrity is enforced at a
different level, not as part of datatype validity;
see <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#cvc-id" shape="rect">Validation Rule: Validation
Root Valid (ID/IDREF)</a> in <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.</div></div><div class="div4">
<h5><a name="IDREF-facets" id="IDREF-facets" shape="rect"></a>3.4.9.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#IDREF" shape="rect">IDREF</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>\i\c* &#8745; [\i-[:]][\c-[:]]*</i></b></span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#IDREF" shape="rect">IDREF</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#IDREF" shape="rect">IDREF</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="IDREF-derived-types" id="IDREF-derived-types" shape="rect"></a>3.4.9.2 Related datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>
from
<a href="#IDREF" shape="rect">IDREF</a></p><ul><li><a href="#IDREFS" shape="rect">IDREFS</a></li></ul></div></div><div class="div3">
<h4><a name="IDREFS" id="IDREFS" shape="rect"></a>3.4.10 IDREFS</h4><p><span class="termdef"><a name="dt-IDREFS" id="dt-IDREFS" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>IDREFS</b> represents the
<a href="http://www.w3.org/TR/xml11/#NT-TokenizedType" shape="rect">IDREFS attribute type</a> from
<a href="#XML" shape="rect">[XML]</a>.&#160; The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<b>IDREFS</b> is the set of finite, non-zero-length sequences of
<a href="#IDREF" shape="rect">IDREF</a>s.
The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <b>IDREFS</b> is the
set of space-separated lists of tokens, of which each token is in the
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#IDREF" shape="rect">IDREF</a>.&#160;
The <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> of <b>IDREFS</b>
is <a href="#IDREF" shape="rect">IDREF</a>.
<a href="#IDREFS" shape="rect">IDREFS</a> is derived
from <a href="#dt-anySimpleType" class="termref" shape="rect"><span class="arrow">&#183;</span><code>anySimpleType</code><span class="arrow">&#183;</span></a> in two steps: an anonymous list type
is defined, whose <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> is <a href="#IDREF" shape="rect">IDREF</a>; this is
the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <a href="#IDREFS" shape="rect">IDREFS</a>, which restricts
its value space to lists with at least one item.
</span></p><p>For compatibility (see <a href="#terminology" shape="rect">Terminology (&#167;1.6)</a>)
<a href="#IDREFS" shape="rect">IDREFS</a>
should be used only on attributes.</p><div class="note"><div class="p"><b>Note:</b> Existence of referents for items validated as
<a href="#IDREFS" shape="rect">IDREFS</a> is not
part of this datatype as defined here.
When this specification is used in conjunction with
<a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>, referential integrity is enforced at a
different level, not as part of datatype validity;
see <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#cvc-id" shape="rect">Validation Rule:
Validation Root Valid (ID/IDREF)</a> in <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.</div></div><div class="div4">
<h5><a name="IDREFS-facets" id="IDREFS-facets" shape="rect"></a>3.4.10.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#IDREFS" shape="rect">IDREFS</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-minLength" name="IDREFS.minLength" shape="rect" id="IDREFS.minLength">minLength</a><span class="normal"><span class="normal"> = <b><i>1</i></b></span></span></li><li><a href="#rf-whiteSpace" name="IDREFS.whiteSpace" shape="rect" id="IDREFS.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#IDREFS" shape="rect">IDREFS</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#IDREFS" shape="rect">IDREFS</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="ENTITY" id="ENTITY" shape="rect"></a>3.4.11 ENTITY</h4><p>
<span class="termdef"><a name="dt-ENTITY" id="dt-ENTITY" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>ENTITY</b> represents the
<a href="http://www.w3.org/TR/xml11/#NT-TokenizedType" shape="rect">ENTITY</a> attribute type from
<a href="#XML" shape="rect">[XML]</a>.&#160; The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<b>ENTITY</b> is the set of all strings that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a>
the <a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production in
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a> and have been declared as an
<a href="http://www.w3.org/TR/xml11/#dt-unparsed" shape="rect">unparsed entity</a> in
a <a href="http://www.w3.org/TR/xml11/#dt-doctype" shape="rect">document type definition</a>.
The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <b>ENTITY</b> is the set
of all strings that <a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>match<span class="arrow">&#183;</span></a> the
<a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production in
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>.
The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>ENTITY</b> is <a href="#NCName" shape="rect">NCName</a>.
</span>
</p><div class="note"><div class="p"><b>Note:</b> It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether an
implementation of this specification supports
the <a href="http://www.w3.org/TR/xml-names11/#NT-NCName" shape="rect">NCName</a> production from
<a href="#XMLNS" shape="rect">[Namespaces in XML]</a>, or that from
<a href="#XMLNS1.0" shape="rect">[Namespaces in XML 1.0]</a>, or both. See
<a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</div></div><div class="note"><div class="p"><b>Note:</b> The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<a href="#ENTITY" shape="rect">ENTITY</a>
is scoped to a specific instance document.</div></div><p>For compatibility (see <a href="#terminology" shape="rect">Terminology (&#167;1.6)</a>)
<a href="#ENTITY" shape="rect">ENTITY</a>
should be used only on attributes.</p><div class="div4">
<h5><a name="ENTITY-facets" id="ENTITY-facets" shape="rect"></a>3.4.11.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#ENTITY" shape="rect">ENTITY</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>\i\c* &#8745; [\i-[:]][\c-[:]]*</i></b></span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#ENTITY" shape="rect">ENTITY</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-minLength" shape="rect">minLength</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#ENTITY" shape="rect">ENTITY</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="ENTITY-derived-types" id="ENTITY-derived-types" shape="rect"></a>3.4.11.2 Related datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>
from
<a href="#ENTITY" shape="rect">ENTITY</a></p><ul><li><a href="#ENTITIES" shape="rect">ENTITIES</a></li></ul></div></div><div class="div3">
<h4><a name="ENTITIES" id="ENTITIES" shape="rect"></a>3.4.12 ENTITIES</h4><p><span class="termdef"><a name="dt-ENTITIES" id="dt-ENTITIES" title="" shape="rect">[Definition:]&#160;&#160;</a><b>ENTITIES</b>
represents the <a href="http://www.w3.org/TR/xml11/#NT-TokenizedType" shape="rect">ENTITIES attribute
type</a> from <a href="#XML" shape="rect">[XML]</a>.&#160; The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
of <b>ENTITIES</b> is the set of finite, non-zero-length sequences of
<a href="#dt-ENTITY" class="termref" shape="rect"><span class="arrow">&#183;</span>ENTITY<span class="arrow">&#183;</span></a> values that have been declared as
<a href="http://www.w3.org/TR/xml11/#dt-unparsed" shape="rect">unparsed entities</a>
in a <a href="http://www.w3.org/TR/xml11/#dt-doctype" shape="rect">document type definition</a>.&#160;
The <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <b>ENTITIES</b> is the
set of space-separated lists of tokens, of which each token is in the
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#ENTITY" shape="rect">ENTITY</a>.&#160;
The <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> of <b>ENTITIES</b> is
<a href="#ENTITY" shape="rect">ENTITY</a>.
<a href="#ENTITIES" shape="rect">ENTITIES</a> is derived
from <a href="#dt-anySimpleType" class="termref" shape="rect"><span class="arrow">&#183;</span><code>anySimpleType</code><span class="arrow">&#183;</span></a> in two steps: an anonymous list type
is defined, whose <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> is <a href="#ENTITY" shape="rect">ENTITY</a>; this is
the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <a href="#ENTITIES" shape="rect">ENTITIES</a>, which restricts
its value space to lists with at least one item.
</span>
</p><div class="note"><div class="p"><b>Note:</b> The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<a href="#ENTITIES" shape="rect">ENTITIES</a>
is scoped to a specific instance document.</div></div><p>For compatibility (see <a href="#terminology" shape="rect">Terminology (&#167;1.6)</a>)
<a href="#ENTITIES" shape="rect">ENTITIES</a>
should be used only on attributes.</p><div class="div4">
<h5><a name="ENTITIES-facets" id="ENTITIES-facets" shape="rect"></a>3.4.12.1
Facets</h5><p><span class="normal"><span class="normal">The <a href="#ENTITIES" shape="rect">ENTITIES</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-minLength" name="ENTITIES.minLength" shape="rect" id="ENTITIES.minLength">minLength</a><span class="normal"><span class="normal"> = <b><i>1</i></b></span></span></li><li><a href="#rf-whiteSpace" name="ENTITIES.whiteSpace" shape="rect" id="ENTITIES.whiteSpace">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#ENTITIES" shape="rect">ENTITIES</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-length" shape="rect">length</a></li><li><a href="#rf-maxLength" shape="rect">maxLength</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#ENTITIES" shape="rect">ENTITIES</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>false</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="integer" id="integer" shape="rect"></a>3.4.13 integer</h4><p><span class="termdef"><a name="dt-integer-datatype" id="dt-integer-datatype" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>integer</b> is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#decimal" shape="rect">decimal</a> by fixing the
value of <a href="#dt-fractionDigits" class="termref" shape="rect"><span class="arrow">&#183;</span>fractionDigits<span class="arrow">&#183;</span></a> to be 0 and
disallowing the trailing decimal point.&#160;
This results in the standard
mathematical concept of the integer numbers.&#160; The
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <b>integer</b> is the infinite
set {...,-2,-1,0,1,2,...}.&#160; The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of
<b>integer</b> is <a href="#decimal" shape="rect">decimal</a>.</span></p><div class="div4">
<h5><a name="integer-lexical-representation" id="integer-lexical-representation" shape="rect"></a>3.4.13.1 Lexical representation</h5><p><a href="#integer" shape="rect">integer</a>
has a lexical representation consisting of a finite-length sequence
of one or more
decimal digits (#x30-#x39) with an optional leading sign.&#160; If the sign is omitted,
"+" is assumed.&#160; For example: -1, 0, 12678967543233, +100000.
</p></div><div class="div4">
<h5><a name="integer-canonical-repr" id="integer-canonical-repr" shape="rect"></a>3.4.13.2 Canonical representation</h5><p>The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#integer" shape="rect">integer</a>
is defined by prohibiting certain options from the
<a href="#integer-lexical-representation" shape="rect">Lexical representation (&#167;3.4.13.1)</a>.&#160;
Specifically, the preceding optional "+" sign is prohibited
and leading zeroes are prohibited.</p></div><div class="div4">
<h5><a name="integer-facets" id="integer-facets" shape="rect"></a>3.4.13.3 Facets</h5><p><span class="normal"><span class="normal">The
<a href="#integer" shape="rect">integer</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" name="integer.fractionDigits" shape="rect" id="integer.fractionDigits">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#integer" shape="rect">integer</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" name="integer.pattern" shape="rect" id="integer.pattern">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#integer" shape="rect">integer</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#integer" shape="rect">integer</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="integer-derived-types" id="integer-derived-types" shape="rect"></a>3.4.13.4 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatypes are
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#integer" shape="rect">integer</a></p><ul><li><a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a></li><li><a href="#long" shape="rect">long</a></li><li><a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a></li></ul></div></div><div class="div3">
<h4><a name="nonPositiveInteger" id="nonPositiveInteger" shape="rect"></a>3.4.14 nonPositiveInteger</h4><p><span class="termdef"><a name="dt-nonPositiveInteger" id="dt-nonPositiveInteger" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>nonPositiveInteger</b> is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from
<a href="#integer" shape="rect">integer</a> by setting the value of
<a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> to be 0.&#160; This results in the
standard mathematical concept of the non-positive integers.
The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <b>nonPositiveInteger</b>
is the infinite set {...,-2,-1,0}.&#160; The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>
of <b>nonPositiveInteger</b> is <a href="#integer" shape="rect">integer</a>.</span></p><div class="div4">
<h5><a name="nonPositiveInteger-lexical-representation" id="nonPositiveInteger-lexical-representation" shape="rect"></a>3.4.14.1 Lexical representation</h5><p><a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a>
has a lexical representation consisting of
an optional preceding sign
followed by a non-empty
finite-length sequence of decimal digits (#x30-#x39).&#160;
The sign may be "+" or may be omitted only for
lexical forms denoting zero; in all other lexical forms, the negative
sign ('<code>-</code>') must be present.&#160;
For example: -1, 0, -12678967543233, -100000.</p></div><div class="div4">
<h5><a name="nonPositiveInteger-canonical-repr" id="nonPositiveInteger-canonical-repr" shape="rect"></a>3.4.14.2 Canonical representation</h5><p>The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a>
is defined by prohibiting certain options from the
<a href="#nonPositiveInteger-lexical-representation" shape="rect">Lexical representation (&#167;3.4.14.1)</a>.&#160;
In the canonical form for zero, the sign must be
omitted.&#160; Leading zeroes are prohibited.</p></div><div class="div4">
<h5><a name="nonPositiveInteger-facets" id="nonPositiveInteger-facets" shape="rect"></a>3.4.14.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-maxInclusive" name="nonPositiveInteger.maxInclusive" shape="rect" id="nonPositiveInteger.maxInclusive">maxInclusive</a><span class="normal"><span class="normal"> = <b><i>0</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="nonPositiveInteger-derived-types" id="nonPositiveInteger-derived-types" shape="rect"></a>3.4.14.4 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a></p><ul><li><a href="#negativeInteger" shape="rect">negativeInteger</a></li></ul></div></div><div class="div3">
<h4><a name="negativeInteger" id="negativeInteger" shape="rect"></a>3.4.15 negativeInteger</h4><p><span class="termdef"><a name="dt-negativeInteger" id="dt-negativeInteger" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>negativeInteger</b> is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from
<a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a> by setting the value of
<a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> to be -1.&#160; This results in the
standard mathematical concept of the negative integers.&#160; The
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <b>negativeInteger</b>
is the infinite set {...,-2,-1}.&#160; The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>
of <b>negativeInteger</b> is <a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a>.
</span></p><div class="div4">
<h5><a name="negativeInteger-lexical-representation" id="negativeInteger-lexical-representation" shape="rect"></a>3.4.15.1 Lexical representation</h5><p><a href="#negativeInteger" shape="rect">negativeInteger</a>
has a lexical representation consisting
of a negative sign ('<code>-</code>') followed by a non-empty finite-length sequence of
decimal digits (#x30-#x39),
at least one of which <span class="rfc2119">must</span> be a digit other than '<code>0</code>'.&#160;
For example: -1, -12678967543233,
-100000.</p></div><div class="div4">
<h5><a name="negativeInteger-canonical-repr" id="negativeInteger-canonical-repr" shape="rect"></a>3.4.15.2 Canonical representation</h5><p>The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#negativeInteger" shape="rect">negativeInteger</a>
is defined by prohibiting certain options from the
<a href="#negativeInteger-lexical-representation" shape="rect">Lexical representation (&#167;3.4.15.1)</a>.&#160;
Specifically, leading zeroes are prohibited.</p></div><div class="div4">
<h5><a name="negativeInteger-facets" id="negativeInteger-facets" shape="rect"></a>3.4.15.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#negativeInteger" shape="rect">negativeInteger</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#negativeInteger" shape="rect">negativeInteger</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-maxInclusive" name="negativeInteger.maxInclusive" shape="rect" id="negativeInteger.maxInclusive">maxInclusive</a><span class="normal"><span class="normal"> = <b><i>-1</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#negativeInteger" shape="rect">negativeInteger</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#negativeInteger" shape="rect">negativeInteger</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="long" id="long" shape="rect"></a>3.4.16 long</h4><p><span class="termdef"><a name="dt-long" id="dt-long" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>long</b>
is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#integer" shape="rect">integer</a> by setting the
value of <a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> to be 9223372036854775807
and <a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a> to be -9223372036854775808.
The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>long</b> is
<a href="#integer" shape="rect">integer</a>.
</span>
</p><div class="div4">
<h5><a name="long-lexical-representation" id="long-lexical-representation" shape="rect"></a>3.4.16.1 Lexical Representation</h5><p><a href="#long" shape="rect">long</a>
has a lexical representation consisting
of an optional sign followed by a non-empty finite-length
sequence of decimal digits (#x30-#x39).&#160; If
the sign is omitted, "+" is assumed.&#160;
For example: -1, 0,
12678967543233, +100000.</p></div><div class="div4">
<h5><a name="long-canonical-repr" id="long-canonical-repr" shape="rect"></a>3.4.16.2 Canonical Representation</h5><p>The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#long" shape="rect">long</a>
is defined by prohibiting certain options from the
<a href="#long-lexical-representation" shape="rect">Lexical Representation (&#167;3.4.16.1)</a>.&#160; Specifically, the
the optional "+" sign is prohibited and leading zeroes are prohibited.</p></div><div class="div4">
<h5><a name="long-facets" id="long-facets" shape="rect"></a>3.4.16.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#long" shape="rect">long</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#long" shape="rect">long</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-maxInclusive" name="long.maxInclusive" shape="rect" id="long.maxInclusive">maxInclusive</a><span class="normal"><span class="normal"> = <b><i>9223372036854775807</i></b></span></span></li><li><a href="#rf-minInclusive" name="long.minInclusive" shape="rect" id="long.minInclusive">minInclusive</a><span class="normal"><span class="normal"> = <b><i>-9223372036854775808</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#long" shape="rect">long</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#long" shape="rect">long</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>true</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>finite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="long-derived-types" id="long-derived-types" shape="rect"></a>3.4.16.4 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#long" shape="rect">long</a></p><ul><li><a href="#int" shape="rect">int</a></li></ul></div></div><div class="div3">
<h4><a name="int" id="int" shape="rect"></a>3.4.17 int</h4><p><span class="termdef"><a name="dt-int" id="dt-int" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>int</b>
is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#long" shape="rect">long</a> by setting the
value of <a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> to be 2147483647 and
<a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a> to be -2147483648.&#160; The
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>int</b> is <a href="#long" shape="rect">long</a>.</span></p><div class="div4">
<h5><a name="int-lexical-representation" id="int-lexical-representation" shape="rect"></a>3.4.17.1 Lexical Representation</h5><p><a href="#int" shape="rect">int</a>
has a lexical representation consisting
of an optional sign followed by a non-empty finite-length
sequence of decimal digits (#x30-#x39).&#160; If the sign is omitted, "+" is assumed.
For example: -1, 0, 126789675, +100000.</p></div><div class="div4">
<h5><a name="int-canonical-repr" id="int-canonical-repr" shape="rect"></a>3.4.17.2 Canonical representation</h5><p>The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#int" shape="rect">int</a>
is defined by prohibiting certain options from the
<a href="#int-lexical-representation" shape="rect">Lexical Representation (&#167;3.4.17.1)</a>.&#160; Specifically, the
the optional "+" sign is prohibited and leading zeroes are prohibited.
</p></div><div class="div4">
<h5><a name="int-facets" id="int-facets" shape="rect"></a>3.4.17.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#int" shape="rect">int</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#int" shape="rect">int</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-maxInclusive" name="int.maxInclusive" shape="rect" id="int.maxInclusive">maxInclusive</a><span class="normal"><span class="normal"> = <b><i>2147483647</i></b></span></span></li><li><a href="#rf-minInclusive" name="int.minInclusive" shape="rect" id="int.minInclusive">minInclusive</a><span class="normal"><span class="normal"> = <b><i>-2147483648</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#int" shape="rect">int</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#int" shape="rect">int</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>true</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>finite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="int-derived-types" id="int-derived-types" shape="rect"></a>3.4.17.4 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#int" shape="rect">int</a></p><ul><li><a href="#short" shape="rect">short</a></li></ul></div></div><div class="div3">
<h4><a name="short" id="short" shape="rect"></a>3.4.18 short</h4><p><span class="termdef"><a name="dt-short" id="dt-short" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>short</b> is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#int" shape="rect">int</a> by setting the
value of <a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> to be 32767 and
<a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a> to be -32768.&#160; The
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>short</b> is
<a href="#int" shape="rect">int</a>.</span></p><div class="div4">
<h5><a name="short-lexical-representation" id="short-lexical-representation" shape="rect"></a>3.4.18.1 Lexical representation</h5><p><a href="#short" shape="rect">short</a>
has a lexical representation consisting
of an optional sign followed by a non-empty finite-length sequence of decimal
digits (#x30-#x39).&#160; If the sign is omitted, "+" is assumed.
For example: -1, 0, 12678, +10000.</p></div><div class="div4">
<h5><a name="short-canonical-repr" id="short-canonical-repr" shape="rect"></a>3.4.18.2 Canonical representation</h5><p>The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#short" shape="rect">short</a>
is defined by prohibiting certain options from the
<a href="#short-lexical-representation" shape="rect">Lexical representation (&#167;3.4.18.1)</a>.&#160; Specifically, the
the optional "+" sign is prohibited and leading zeroes are prohibited.</p></div><div class="div4">
<h5><a name="short-facets" id="short-facets" shape="rect"></a>3.4.18.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#short" shape="rect">short</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#short" shape="rect">short</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-maxInclusive" name="short.maxInclusive" shape="rect" id="short.maxInclusive">maxInclusive</a><span class="normal"><span class="normal"> = <b><i>32767</i></b></span></span></li><li><a href="#rf-minInclusive" name="short.minInclusive" shape="rect" id="short.minInclusive">minInclusive</a><span class="normal"><span class="normal"> = <b><i>-32768</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#short" shape="rect">short</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#short" shape="rect">short</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>true</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>finite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="short-derived-types" id="short-derived-types" shape="rect"></a>3.4.18.4 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#short" shape="rect">short</a></p><ul><li><a href="#byte" shape="rect">byte</a></li></ul></div></div><div class="div3">
<h4><a name="byte" id="byte" shape="rect"></a>3.4.19 byte</h4><p><span class="termdef"><a name="dt-byte" id="dt-byte" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>byte</b>
is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#short" shape="rect">short</a>
by setting the value of <a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> to be 127
and <a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a> to be -128.
The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>byte</b> is
<a href="#short" shape="rect">short</a>.</span></p><div class="div4">
<h5><a name="byte-lexical-representation" id="byte-lexical-representation" shape="rect"></a>3.4.19.1 Lexical representation</h5><p><a href="#byte" shape="rect">byte</a>
has a lexical representation consisting
of an optional sign followed by a non-empty finite-length
sequence of decimal digits (#x30-#x39).&#160; If the sign is omitted, "+" is assumed.
For example: -1, 0, 126, +100.</p></div><div class="div4">
<h5><a name="byte-canonical-repr" id="byte-canonical-repr" shape="rect"></a>3.4.19.2 Canonical representation</h5><p>The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#byte" shape="rect">byte</a>
is defined by prohibiting certain options from the
<a href="#byte-lexical-representation" shape="rect">Lexical representation (&#167;3.4.19.1)</a>.&#160; Specifically, the
the optional "+" sign is prohibited and leading zeroes are prohibited.</p></div><div class="div4">
<h5><a name="byte-facets" id="byte-facets" shape="rect"></a>3.4.19.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#byte" shape="rect">byte</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#byte" shape="rect">byte</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-maxInclusive" name="byte.maxInclusive" shape="rect" id="byte.maxInclusive">maxInclusive</a><span class="normal"><span class="normal"> = <b><i>127</i></b></span></span></li><li><a href="#rf-minInclusive" name="byte.minInclusive" shape="rect" id="byte.minInclusive">minInclusive</a><span class="normal"><span class="normal"> = <b><i>-128</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#byte" shape="rect">byte</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#byte" shape="rect">byte</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>true</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>finite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="nonNegativeInteger" id="nonNegativeInteger" shape="rect"></a>3.4.20 nonNegativeInteger</h4><p><span class="termdef"><a name="dt-nonNegativeInteger" id="dt-nonNegativeInteger" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>nonNegativeInteger</b> is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from
<a href="#integer" shape="rect">integer</a> by setting the value of
<a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a> to be 0.&#160; This results in the
standard mathematical concept of the non-negative integers. The
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <b>nonNegativeInteger</b>
is the infinite set {0,1,2,...}.&#160; The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of
<b>nonNegativeInteger</b> is <a href="#integer" shape="rect">integer</a>.</span></p><div class="div4">
<h5><a name="nonNegativeInteger-lexical-representation" id="nonNegativeInteger-lexical-representation" shape="rect"></a>3.4.20.1 Lexical representation</h5><p><a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a>
has a lexical representation consisting of
an optional sign followed by a non-empty finite-length
sequence of decimal digits (#x30-#x39).&#160; If the sign is omitted,
the positive sign ('<code>+</code>') is assumed.
If the sign is present, it must be "+" except for lexical forms
denoting zero, which may be preceded by a positive ('<code>+</code>') or a negative ('<code>-</code>') sign.
For example:
1, 0, 12678967543233, +100000.
</p></div><div class="div4">
<h5><a name="nonNegativeInteger-canonical-repr" id="nonNegativeInteger-canonical-repr" shape="rect"></a>3.4.20.2 Canonical representation</h5><p>The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a>
is defined by prohibiting certain options from the
<a href="#nonNegativeInteger-lexical-representation" shape="rect">Lexical representation (&#167;3.4.20.1)</a>.&#160; Specifically, the
the optional "+" sign is prohibited and leading zeroes are prohibited.</p></div><div class="div4">
<h5><a name="nonNegativeInteger-facets" id="nonNegativeInteger-facets" shape="rect"></a>3.4.20.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-minInclusive" name="nonNegativeInteger.minInclusive" shape="rect" id="nonNegativeInteger.minInclusive">minInclusive</a><span class="normal"><span class="normal"> = <b><i>0</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="nonNegativeInteger-derived-types" id="nonNegativeInteger-derived-types" shape="rect"></a>3.4.20.4 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatypes are
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a></p><ul><li><a href="#unsignedLong" shape="rect">unsignedLong</a></li><li><a href="#positiveInteger" shape="rect">positiveInteger</a></li></ul></div></div><div class="div3">
<h4><a name="unsignedLong" id="unsignedLong" shape="rect"></a>3.4.21 unsignedLong</h4><p>
<span class="termdef"><a name="dt-unsignedLong" id="dt-unsignedLong" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>unsignedLong</b> is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from
<a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a> by setting the value of
<a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> to be 18446744073709551615.&#160;
The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>unsignedLong</b> is
<a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a>.
</span>
</p><div class="div4">
<h5><a name="unsignedLong-lexical-representation" id="unsignedLong-lexical-representation" shape="rect"></a>3.4.21.1 Lexical representation</h5><p><a href="#unsignedLong" shape="rect">unsignedLong</a>
has a lexical representation consisting of
an optional sign followed by a
non-empty
finite-length sequence of decimal digits (#x30-#x39).&#160;
If the sign is omitted, the positive sign
('<code>+</code>') is assumed.&#160; If the sign is present, it must be
'<code>+</code>' except for lexical forms denoting zero, which may
be preceded by a positive ('<code>+</code>') or a negative
('<code>-</code>') sign. For example: 0, 12678967543233,
100000.</p></div><div class="div4">
<h5><a name="unsignedLong-canonical-repr" id="unsignedLong-canonical-repr" shape="rect"></a>3.4.21.2 Canonical representation</h5><p>The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#unsignedLong" shape="rect">unsignedLong</a>
is defined by prohibiting certain options from the
<a href="#unsignedLong-lexical-representation" shape="rect">Lexical representation (&#167;3.4.21.1)</a>.&#160; Specifically,
leading zeroes are prohibited.</p></div><div class="div4">
<h5><a name="unsignedLong-facets" id="unsignedLong-facets" shape="rect"></a>3.4.21.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#unsignedLong" shape="rect">unsignedLong</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#unsignedLong" shape="rect">unsignedLong</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-maxInclusive" name="unsignedLong.maxInclusive" shape="rect" id="unsignedLong.maxInclusive">maxInclusive</a><span class="normal"><span class="normal"> = <b><i>18446744073709551615</i></b></span></span></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a><span class="normal"><span class="normal"> = <b><i>0</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#unsignedLong" shape="rect">unsignedLong</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#unsignedLong" shape="rect">unsignedLong</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>true</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>finite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="unsignedLong-derived-types" id="unsignedLong-derived-types" shape="rect"></a>3.4.21.4 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#unsignedLong" shape="rect">unsignedLong</a></p><ul><li><a href="#unsignedInt" shape="rect">unsignedInt</a></li></ul></div></div><div class="div3">
<h4><a name="unsignedInt" id="unsignedInt" shape="rect"></a>3.4.22 unsignedInt</h4><p><span class="termdef"><a name="dt-unsignedInt" id="dt-unsignedInt" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>unsignedInt</b> is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from
<a href="#unsignedLong" shape="rect">unsignedLong</a> by setting the value of
<a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> to be 4294967295.&#160; The
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>unsignedInt</b> is
<a href="#unsignedLong" shape="rect">unsignedLong</a>.
</span>
</p><div class="div4">
<h5><a name="unsignedInt-lexical-representation" id="unsignedInt-lexical-representation" shape="rect"></a>3.4.22.1 Lexical representation</h5><p><a href="#unsignedInt" shape="rect">unsignedInt</a>
has a lexical representation consisting
of an optional sign followed by a
non-empty
finite-length sequence of decimal digits (#x30-#x39).&#160;
If the sign is omitted, the positive sign
('<code>+</code>') is assumed.&#160; If the sign is present, it must be
'<code>+</code>' except for lexical forms denoting zero, which may
be preceded by a positive ('<code>+</code>') or a negative
('<code>-</code>') sign. For example: 0,
1267896754, 100000.</p></div><div class="div4">
<h5><a name="unsignedInt-canonical-repr" id="unsignedInt-canonical-repr" shape="rect"></a>3.4.22.2 Canonical representation</h5><p>The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#unsignedInt" shape="rect">unsignedInt</a>
is defined by prohibiting certain options from the
<a href="#unsignedInt-lexical-representation" shape="rect">Lexical representation (&#167;3.4.22.1)</a>.&#160; Specifically,
leading zeroes are prohibited.
</p></div><div class="div4">
<h5><a name="unsignedInt-facets" id="unsignedInt-facets" shape="rect"></a>3.4.22.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#unsignedInt" shape="rect">unsignedInt</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#unsignedInt" shape="rect">unsignedInt</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-maxInclusive" name="unsignedInt.maxInclusive" shape="rect" id="unsignedInt.maxInclusive">maxInclusive</a><span class="normal"><span class="normal"> = <b><i>4294967295</i></b></span></span></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a><span class="normal"><span class="normal"> = <b><i>0</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#unsignedInt" shape="rect">unsignedInt</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#unsignedInt" shape="rect">unsignedInt</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>true</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>finite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="unsignedInt-derived-types" id="unsignedInt-derived-types" shape="rect"></a>3.4.22.4 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#unsignedInt" shape="rect">unsignedInt</a></p><ul><li><a href="#unsignedShort" shape="rect">unsignedShort</a></li></ul></div></div><div class="div3">
<h4><a name="unsignedShort" id="unsignedShort" shape="rect"></a>3.4.23 unsignedShort</h4><p><span class="termdef"><a name="dt-unsignedShort" id="dt-unsignedShort" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>unsignedShort</b> is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from
<a href="#unsignedInt" shape="rect">unsignedInt</a> by setting the value of
<a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> to be 65535.&#160; The
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>unsignedShort</b> is
<a href="#unsignedInt" shape="rect">unsignedInt</a>.</span></p><div class="div4">
<h5><a name="unsignedShort-lexical-representation" id="unsignedShort-lexical-representation" shape="rect"></a>3.4.23.1 Lexical representation</h5><p><a href="#unsignedShort" shape="rect">unsignedShort</a>
has a lexical representation consisting of
an optional sign followed by a
non-empty finite-length
sequence of decimal digits (#x30-#x39). If the sign is omitted, the positive sign
('<code>+</code>') is assumed.&#160; If the sign is present, it must be
'<code>+</code>' except for lexical forms denoting zero, which may
be preceded by a positive ('<code>+</code>') or a negative
('<code>-</code>') sign.&#160; For example: 0, 12678, 10000.</p></div><div class="div4">
<h5><a name="unsignedShort-canonical-repr" id="unsignedShort-canonical-repr" shape="rect"></a>3.4.23.2 Canonical representation</h5><p>The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#unsignedShort" shape="rect">unsignedShort</a>
is defined by prohibiting certain options from the
<a href="#unsignedShort-lexical-representation" shape="rect">Lexical representation (&#167;3.4.23.1)</a>.&#160;
Specifically, the leading zeroes are prohibited.</p></div><div class="div4">
<h5><a name="unsignedShort-facets" id="unsignedShort-facets" shape="rect"></a>3.4.23.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#unsignedShort" shape="rect">unsignedShort</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#unsignedShort" shape="rect">unsignedShort</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-maxInclusive" name="unsignedShort.maxInclusive" shape="rect" id="unsignedShort.maxInclusive">maxInclusive</a><span class="normal"><span class="normal"> = <b><i>65535</i></b></span></span></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a><span class="normal"><span class="normal"> = <b><i>0</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#unsignedShort" shape="rect">unsignedShort</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#unsignedShort" shape="rect">unsignedShort</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>true</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>finite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div><div class="div4">
<h5><a name="unsignedShort-derived-types" id="unsignedShort-derived-types" shape="rect"></a>3.4.23.4 Derived datatypes</h5><p>
The following <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
datatype is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
from
<a href="#unsignedShort" shape="rect">unsignedShort</a></p><ul><li><a href="#unsignedByte" shape="rect">unsignedByte</a></li></ul></div></div><div class="div3">
<h4><a name="unsignedByte" id="unsignedByte" shape="rect"></a>3.4.24 unsignedByte</h4><p><span class="termdef"><a name="dt-unsignedByte" id="dt-unsignedByte" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>unsignedByte</b> is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from
<a href="#unsignedShort" shape="rect">unsignedShort</a> by setting the value of
<a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> to be 255.&#160; The
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <b>unsignedByte</b> is
<a href="#unsignedShort" shape="rect">unsignedShort</a>.</span></p><div class="div4">
<h5><a name="unsignedByte-lexical-representation" id="unsignedByte-lexical-representation" shape="rect"></a>3.4.24.1 Lexical representation</h5><p><a href="#unsignedByte" shape="rect">unsignedByte</a>
has a lexical representation consisting of
an optional sign followed by a
non-empty finite-length
sequence of decimal digits (#x30-#x39). If the sign is omitted, the positive sign
('<code>+</code>') is assumed.&#160; If the sign is present, it must be
'<code>+</code>' except for lexical forms denoting zero, which may
be preceded by a positive ('<code>+</code>') or a negative
('<code>-</code>') sign.&#160; For example: 0, 126, 100.</p></div><div class="div4">
<h5><a name="unsignedByte-canonical-repr" id="unsignedByte-canonical-repr" shape="rect"></a>3.4.24.2 Canonical representation</h5><p>
The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#unsignedByte" shape="rect">unsignedByte</a>
is defined by prohibiting certain options from the
<a href="#unsignedByte-lexical-representation" shape="rect">Lexical representation (&#167;3.4.24.1)</a>.&#160; Specifically,
leading zeroes are prohibited.</p></div><div class="div4">
<h5><a name="unisngedByte-facets" id="unisngedByte-facets" shape="rect"></a>3.4.24.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#unsignedByte" shape="rect">unsignedByte</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#unsignedByte" shape="rect">unsignedByte</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-maxInclusive" name="unsignedByte.maxInclusive" shape="rect" id="unsignedByte.maxInclusive">maxInclusive</a><span class="normal"><span class="normal"> = <b><i>255</i></b></span></span></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a><span class="normal"><span class="normal"> = <b><i>0</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#unsignedByte" shape="rect">unsignedByte</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#unsignedByte" shape="rect">unsignedByte</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>true</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>finite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="positiveInteger" id="positiveInteger" shape="rect"></a>3.4.25 positiveInteger</h4><p><span class="termdef"><a name="dt-positiveInteger" id="dt-positiveInteger" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>positiveInteger</b> is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from
<a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a> by setting the value of
<a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a> to be 1.&#160; This results in the standard
mathematical concept of the positive integer numbers.&#160;
The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <b>positiveInteger</b>
is the infinite set {1,2,...}.&#160; The <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of
<b>positiveInteger</b> is <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a>.</span></p><div class="div4">
<h5><a name="positiveInteger-lexical-representation" id="positiveInteger-lexical-representation" shape="rect"></a>3.4.25.1 Lexical representation</h5><p><a href="#positiveInteger" shape="rect">positiveInteger</a>
has a lexical representation consisting
of an optional positive sign ('<code>+</code>') followed by a
non-empty finite-length
sequence of decimal digits (#x30-#x39),
at least one of which <span class="rfc2119">must</span> be a digit other than '<code>0</code>'.&#160;
For example: 1, 12678967543233, +100000.</p></div><div class="div4">
<h5><a name="positiveInteger-canonical-repr" id="positiveInteger-canonical-repr" shape="rect"></a>3.4.25.2 Canonical representation</h5><p>
The <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> for
<a href="#positiveInteger" shape="rect">positiveInteger</a>
is defined by prohibiting certain options from the
<a href="#positiveInteger-lexical-representation" shape="rect">Lexical representation (&#167;3.4.25.1)</a>.&#160; Specifically, the
optional "+" sign is prohibited and leading zeroes are prohibited.
</p></div><div class="div4">
<h5><a name="positiveInteger-facets" id="positiveInteger-facets" shape="rect"></a>3.4.25.3
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#positiveInteger" shape="rect">positiveInteger</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-fractionDigits" shape="rect">fractionDigits</a><span class="normal"><span class="normal"> = <b><i>0</i></b> (fixed)</span></span></li><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#positiveInteger" shape="rect">positiveInteger</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" shape="rect">pattern</a><span class="normal"><span class="normal"> = <b><i>[\-+]?[0-9]+</i></b></span></span></li><li><a href="#rf-minInclusive" name="positiveInteger.minInclusive" shape="rect" id="positiveInteger.minInclusive">minInclusive</a><span class="normal"><span class="normal"> = <b><i>1</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#positiveInteger" shape="rect">positiveInteger</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-totalDigits" shape="rect">totalDigits</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#positiveInteger" shape="rect">positiveInteger</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>total</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>true</i></b></li></ul></div></div></div></div><div class="div3">
<h4><a name="yearMonthDuration" id="yearMonthDuration" shape="rect"></a>3.4.26 yearMonthDuration</h4><p><span class="termdef"><a name="dt-yearMonthDuration" id="dt-yearMonthDuration" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>yearMonthDuration</b> is a datatype <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from
<a href="#duration" shape="rect">duration</a> by restricting its <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> to instances of
<a href="#nt-yearMonthDurationRep" shape="rect"><i>yearMonthDurationLexicalRep</i></a>.</span>&#160; The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<b>yearMonthDuration</b> is therefore that of <a href="#duration" shape="rect">duration</a>
restricted to those whose <a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a>
property is 0.&#160; This results in a duration datatype which is totally ordered.</p><div class="note"><div class="p"><b>Note:</b> The always-zero <a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> is formally retained in order that
<a href="#yearMonthDuration" shape="rect">yearMonthDuration</a>'s (abstract) value space truly be a subset of that of
<a href="#duration" shape="rect">duration</a>&#160; An obvious implementation optimization is to ignore the zero and implement
<a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> values simply as <a href="#integer" shape="rect">integer</a> values.</div></div><div class="div4">
<h5><a name="yearMonthDuration-lexical-mapping" id="yearMonthDuration-lexical-mapping" shape="rect"></a>3.4.26.1 The <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> Lexical Mapping</h5><div class="block">The lexical space is reduced from that of <a href="#duration" shape="rect">duration</a> by
disallowing <a href="#nt-duDaFrag" shape="rect"><i>duDayFrag</i></a> and <a href="#nt-duTFrag" shape="rect"><i>duTimeFrag</i></a>
fragments in the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a>.
<div class="defset">
<div class="defset-head">The <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> Lexical
Representation</div>
<div class="prod">
<a name="nt-yearMonthDurationRep" id="nt-yearMonthDurationRep" shape="rect"></a><span class="lhs">[42]
&#160;
<i>yearMonthDurationLexicalRep</i></span>&#160;::= '<code>-</code>'?&#160;'<code>P</code>'&#160;<a href="#nt-duYMFrag" shape="rect"><i>duYearMonthFrag</i></a></div></div>
</div><p>The lexical
space of <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> consists of
strings which match the regular expression
'<code>-?P((([0-9]+Y)([0-9]+M)?)|([0-9]+M))</code>' or the
expression '<code>-?P[0-9]+(Y([0-9]+M)?|M)</code>', but the
formal definition of <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> uses a
simpler regular expression in its <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a>
facet: '<code>[^DT]*</code>'. This pattern matches only
strings of characters which contain no 'D'
and no 'T', thus restricting the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>
of <a href="#duration" shape="rect">duration</a> to strings with no day, hour,
minute, or seconds fields.
</p><p>The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is that of <a href="#duration" shape="rect">duration</a> restricted in its
range to the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> (which reduces its domain to omit any
values not in the <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> value space).
</p><div class="note"><div class="p"><b>Note:</b> The <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> value whose <a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> and
<a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a>
are both zero has no <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> in this datatype since its
<a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a> in <a href="#duration" shape="rect">duration</a> ('<code>PT0S</code>')
is not in the
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a>.</div></div></div><div class="div4">
<h5><a name="YearMonthDuration-facets" id="YearMonthDuration-facets" shape="rect"></a>3.4.26.2
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" name="yearMonthDuration.pattern" shape="rect" id="yearMonthDuration.pattern">pattern</a><span class="normal"><span class="normal"> = <b><i>[^DT]*</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#yearMonthDuration" shape="rect">yearMonthDuration</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div><div class="note"><div class="p"><b>Note:</b> The <a href="#ff-o" class="compref" shape="rect">ordered</a> facet has the value
<b><i>partial</i></b> even though the datatype is
in fact totally ordered, because (as explained in
<a href="#rf-ordered" shape="rect">ordered (&#167;4.2.1)</a>),
the value of that facet is unchanged by derivation.
</div></div></div></div><div class="div3">
<h4><a name="dayTimeDuration" id="dayTimeDuration" shape="rect"></a>3.4.27 dayTimeDuration</h4><p>
<span class="termdef"><a name="dt-dayTimeDuration" id="dt-dayTimeDuration" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>dayTimeDuration</b> is a datatype <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from
<a href="#duration" shape="rect">duration</a> by restricting its <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> to instances of
<a href="#nt-dayTimeDurationRep" shape="rect"><i>dayTimeDurationLexicalRep</i></a>.</span> The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<b>dayTimeDuration</b>
is therefore that of <a href="#duration" shape="rect">duration</a> restricted to those whose <a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a>
property is 0.&#160; This results in a duration datatype which is totally ordered.</p><div class="div4">
<h5><a name="dayTimeDuration-lexical-mapping" id="dayTimeDuration-lexical-mapping" shape="rect"></a>3.4.27.1 The <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> Lexical Space</h5><p>
The lexical space is reduced from that of <a href="#duration" shape="rect">duration</a> by
disallowing <a href="#nt-duYrFrag" shape="rect"><i>duYearFrag</i></a> and <a href="#nt-duMoFrag" shape="rect"><i>duMonthFrag</i></a>
fragments in the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a>.
</p><div class="block"><div class="defset">
<div class="defset-head">The <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> Lexical Representation</div>
<div class="prod">
<a name="nt-dayTimeDurationRep" id="nt-dayTimeDurationRep" shape="rect"></a><span class="lhs">[43]
&#160;
<i>dayTimeDurationLexicalRep</i></span>&#160;::= '<code>-</code>'?&#160;'<code>P</code>'&#160;<a href="#nt-duDTFrag" shape="rect"><i>duDayTimeFrag</i></a></div></div>
</div><p>The lexical space of
<a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> consists of
strings in the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#duration" shape="rect">duration</a> which
match the regular expression '<code>[^YM]*[DT].*</code>';
this pattern eliminates all durations with year or month fields,
leaving only those with day, hour, minutes, and/or seconds
fields.
</p><p>
The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is that of <a href="#duration" shape="rect">duration</a> restricted
in its
range to the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> (which reduces its domain to omit any
values not in
the <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> value
space).
</p></div><div class="div4">
<h5><a name="dayTimeDuration-facets" id="dayTimeDuration-facets" shape="rect"></a>3.4.27.2
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">The <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> datatype
has the following
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with the values shown; these
facets <span class="rfc2119">may</span> be specified
in the derivation of new types, if the
value given is at least as restrictive as the one shown:</p><ul><li><a href="#rf-pattern" name="dayTimeDuration.pattern" shape="rect" id="dayTimeDuration.pattern">pattern</a><span class="normal"><span class="normal"> = <b><i>[^YM]*(T.*)?</i></b></span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#dayTimeDuration" shape="rect">dayTimeDuration</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div><div class="note"><div class="p"><b>Note:</b> The <a href="#ff-o" class="compref" shape="rect">ordered</a> facet has the value
<b><i>partial</i></b> even though the datatype is
in fact totally ordered, because (as explained in
<a href="#rf-ordered" shape="rect">ordered (&#167;4.2.1)</a>),
the value of that facet is unchanged by derivation.
</div></div></div></div><div class="div3">
<h4><a name="dateTimeStamp" id="dateTimeStamp" shape="rect"></a>3.4.28 dateTimeStamp</h4><p>
<span class="termdef"><a name="dt-dateTimeStamp" id="dt-dateTimeStamp" title="" shape="rect">[Definition:]&#160;&#160;</a>
The <b>dateTimeStamp</b> datatype is <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from
<a href="#dateTime" shape="rect">dateTime</a> by giving the value <b><i>required</i></b> to its
<a href="#f-tz" class="compref" shape="rect">explicitTimezone</a> facet.</span> The result is that all values of
<a href="#dateTimeStamp" shape="rect">dateTimeStamp</a> are required to have explicit time zone offsets
and the datatype is totally ordered.
</p><div class="div4">
<h5><a name="dateTimeStamp-lexical-mapping" id="dateTimeStamp-lexical-mapping" shape="rect"></a>3.4.28.1 The <a href="#dateTimeStamp" shape="rect">dateTimeStamp</a> Lexical Space</h5><p>As a consequence of requiring an explicit time zone offset, the
lexical space of <a href="#dateTimeStamp" shape="rect">dateTimeStamp</a> is reduced from that
of <a href="#dateTime" shape="rect">dateTime</a> by requiring a <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>
fragment in the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a>.</p><div class="block"><div class="defset">
<div class="defset-head">The <a href="#dateTimeStamp" shape="rect">dateTimeStamp</a> Lexical Representation</div>
<div class="prod">
<a name="nt-dateTimeStampRep" id="nt-dateTimeStampRep" shape="rect"></a><span class="lhs">[44]
&#160;
<i>dateTimeStampLexicalRep</i></span>&#160;::= <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>&#160;'<code>-</code>'&#160;<a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>&#160;'<code>-</code>'&#160;<a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>&#160;'<code>T</code>'&#160;((<a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>&#160;'<code>:</code>'&#160;<a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>&#160;'<code>:</code>'&#160;<a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>)&#160;|
<a href="#nt-eodFrag" shape="rect"><i>endOfDayFrag</i></a>) <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>&#160;&#160; <b>Constraint:</b>&#160; Day-of-month Representations</div></div>
</div><div class="note"><div class="p"><b>Note:</b>
For details of the <a href="#con-dateTime-day" shape="rect">Day-of-month Representations (&#167;3.3.7.2)</a> constraint, see
<a href="#dateTime" shape="rect">dateTime</a>, from which the constraint is inherited.
</div></div><p>In other words, the lexical space of <a href="#dateTimeStamp" shape="rect">dateTimeStamp</a> consists of strings which are in the
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#dateTime" shape="rect">dateTime</a> and which
also match the regular expression
'<code>.*(Z|(\+|-)[0-9][0-9]:[0-9][0-9])</code>'.</p><p>The
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> is that of <a href="#dateTime" shape="rect">dateTime</a> restricted to
the <a href="#dateTimeStamp" shape="rect">dateTimeStamp</a> lexical space.</p><p>The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> is that of <a href="#dateTime" shape="rect">dateTime</a> restricted
to the <a href="#dateTimeStamp" shape="rect">dateTimeStamp</a> value
space.</p></div><div class="div4">
<h5><a name="dateTimeStamp-facets" id="dateTimeStamp-facets" shape="rect"></a>3.4.28.2
Facets</h5><p><span class="normal"><span class="normal">The
<a href="#dateTimeStamp" shape="rect">dateTimeStamp</a> datatype
and all datatypes derived from it by restriction have the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a></span></span> with <b><i>fixed</i></b> values; these
facets <span class="rfc2119">must not</span> be changed from the values shown:</p><ul><li><a href="#rf-whiteSpace" shape="rect">whiteSpace</a><span class="normal"><span class="normal"> = <b><i>collapse</i></b> (fixed)</span></span></li><li><a href="#rf-explicitTimezone" name="dateTimeStamp.explicitTimezone" shape="rect" id="dateTimeStamp.explicitTimezone">explicitTimezone</a><span class="normal"><span class="normal"> = <b><i>required</i></b> (fixed)</span></span></li></ul><p><span class="normal"><span class="normal">Datatypes derived by
restriction from <a href="#dateTimeStamp" shape="rect">dateTimeStamp</a> <span class="rfc2119">may</span> also
specify values for the
following <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>:</span></span></p><ul><li><a href="#rf-pattern" shape="rect">pattern</a></li><li><a href="#rf-enumeration" shape="rect">enumeration</a></li><li><a href="#rf-maxInclusive" shape="rect">maxInclusive</a></li><li><a href="#rf-maxExclusive" shape="rect">maxExclusive</a></li><li><a href="#rf-minInclusive" shape="rect">minInclusive</a></li><li><a href="#rf-minExclusive" shape="rect">minExclusive</a></li><li><a href="#rf-assertions" shape="rect">assertions</a></li></ul><div class="normal"><div class="normal"><p>The
<a href="#dateTimeStamp" shape="rect">dateTimeStamp</a>
datatype
has the following values for its
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>:
</p><ul><li><a href="#rf-ordered" shape="rect">ordered</a> = <b><i>partial</i></b></li><li><a href="#rf-bounded" shape="rect">bounded</a> = <b><i>false</i></b></li><li><a href="#rf-cardinality" shape="rect">cardinality</a> = <b><i>countably infinite</i></b></li><li><a href="#rf-numeric" shape="rect">numeric</a> = <b><i>false</i></b></li></ul></div></div><div class="note"><div class="p"><b>Note:</b> The <a href="#ff-o" class="compref" shape="rect">ordered</a> facet has the value
<b><i>partial</i></b> even though the datatype is
in fact totally ordered, because (as explained in
<a href="#rf-ordered" shape="rect">ordered (&#167;4.2.1)</a>),
the value of that facet is unchanged by derivation.
</div></div></div></div></div></div><div class="div1">
<h2><a name="datatype-components" id="datatype-components" shape="rect"></a>4 Datatype components</h2><p>The preceding sections of this
specification have described datatypes in a way largely
independent of their use in the particular context of
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-va" shape="rect">schema-aware processing</a> as
defined in <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.</p><p>
This section presents the mechanisms necessary to integrate datatypes into
the context of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>, mostly in terms of
the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#c" shape="rect">schema
component</a>
abstraction introduced there. The account of datatypes given in this
specification is also intended to be useful in other contexts.
Any specification or other formal system intending to use datatypes as
defined above, particularly if definition of new datatypes via
facet-based restriction is envisaged, will need to provide analogous
mechanisms for some, but not necessarily all, of what follows below.
For example, the <a href="#std-target_namespace" class="propref" shape="rect">{target namespace}</a> and
<a href="#std-final" class="propref" shape="rect">{final}</a> properties are required because of
particular aspects of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a> which are not
in principle necessary for the use of datatypes as defined here.</p><p>The following sections provide full details on the properties and
significance of each kind of schema component involved in datatype
definitions. For each property, the kinds of values it is allowed to have is
specified.&#160; Any property not identified as optional is required to
be present; optional properties which are not present have
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-null" shape="rect">absent</a> as their value.
Any property identified as a having a set, subset or <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>
value may have an empty value unless this is explicitly ruled out: this is
not the same as <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-null" shape="rect">absent</a>.
Any property value identified as a superset or a subset of some set may
be equal to that set, unless a proper superset or subset is explicitly
called for.
</p><p>
For more information on the notion of schema components,
see <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#components" shape="rect">Schema Component Details</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</p><p><span class="termdef"><a name="dt-owner" id="dt-owner" title="" shape="rect">[Definition:]&#160;&#160;</a>A
component may be referred to as the <b>owner</b> of its properties, and of the values of
those properties.</span></p><div class="div2">
<h3 class="withToc"><span class="nav"> <a href="#rf-fund-facets" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="rf-defn" id="rf-defn" shape="rect"></a>4.1 Simple Type Definition</h3><div class="localToc">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.1.1 <a href="#dc-defn" shape="rect">The Simple Type Definition Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.1.2 <a href="#xr-defn" shape="rect">XML Representation of Simple Type Definition Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.1.3 <a href="#defn-rep-constr" shape="rect">Constraints on XML Representation of Simple Type Definition</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.1.4 <a href="#defn-validation-rules" shape="rect">Simple Type Definition Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.1.5 <a href="#defn-coss" shape="rect">Constraints on Simple Type Definition Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.1.6 <a href="#builtin-stds" shape="rect">Built-in Simple Type Definitions</a><br clear="none" />
</div><p>
Simple Type Definitions provide for:
</p><ul><li><div class="p">In the case of
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes,
identifying a datatype with its definition in this specification.</div></li><li><div class="p">In the case of <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> datatypes,
defining the datatype in terms of other datatypes.</div></li><li><div class="p">Attaching a <a href="#QName" shape="rect">QName</a> to the datatype.</div></li></ul><div class="div3">
<h4><a name="dc-defn" id="dc-defn" shape="rect"></a>4.1.1 The Simple Type Definition Schema Component</h4><p>The Simple Type Definition schema component has the following properties:</p><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="std" id="std" shape="rect">Simple Type Definition</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="std-annotations" shape="rect" id="std-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="std-name" shape="rect" id="std-name"></a><div class="pdName"><span class="propdef">{name}</span></div>
<div class="pdDef">
An xs:NCName value. Optional.</div>
</div>
<div class="propDefn"><a name="std-target_namespace" shape="rect" id="std-target_namespace"></a><div class="pdName"><span class="propdef">{target namespace}</span></div>
<div class="pdDef">
An xs:anyURI value. Optional.</div>
</div>
<div class="propDefn"><a id="std-final" name="std-final" shape="rect"></a><div class="pdName"><span class="propdef">{final}</span></div>
<div class="pdDef">
<div class="ownDesc">
<p>A subset of <code>{</code><b><i>restriction</i></b>,
<b><i>extension</i></b>, <b><i>list</i></b>,
<b><i>union</i></b><code>}</code></p></div>
</div>
</div>
<div class="propDefn"><a name="std-context" shape="rect" id="std-context"></a><div class="pdName"><span class="propdef">{context}</span></div>
<div class="pdDef">
Required if <a href="#std-name" class="propref" shape="rect">{name}</a> is
<b><i>absent</i></b>, otherwise <span class="rfc2119">must</span>
be <b><i>absent</i></b><div class="ownDesc">
<p>Either an <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#ad" class="compref" shape="rect">Attribute Declaration</a>, an
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#ed" class="compref" shape="rect">Element Declaration</a>, a <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#ctd" class="compref" shape="rect">Complex Type Definition</a> or a <a href="#std" class="compref" shape="rect">Simple Type Definition</a>.</p></div>
</div>
</div>
<div class="propDefn"><a name="std-base_type_definition" shape="rect" id="std-base_type_definition"></a><div class="pdName"><span class="propdef">{base type definition}</span></div>
<div class="pdDef">
A <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#td" class="compref" shape="rect">Type Definition</a> component. Required.<div class="ownDesc">
<p>With one exception, the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
of any <a href="#std" class="compref" shape="rect">Simple Type Definition</a> is a <a href="#std" class="compref" shape="rect">Simple Type Definition</a>.
The exception is <a href="#anySimpleType-def" class="termref" shape="rect"><span class="arrow">&#183;</span>anySimpleType<span class="arrow">&#183;</span></a>, which has
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-anyType" shape="rect">anyType</a>, a
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#ctd" shape="rect">Complex Type
Definition</a>, as its <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</p></div>
</div>
</div>
<div class="propDefn"><a name="std-facets" shape="rect" id="std-facets"></a><div class="pdName"><span class="propdef">{facets}</span></div>
<div class="pdDef">
A set of <a href="#f" class="compref" shape="rect">Constraining Facet</a> components. </div>
</div>
<div class="propDefn"><a name="std-fundamental_facets" shape="rect" id="std-fundamental_facets"></a><div class="pdName"><span class="propdef">{fundamental facets}</span></div>
<div class="pdDef">
A set of <a href="#ff" class="compref" shape="rect">Fundamental Facet</a> components. </div>
</div>
<div class="propDefn"><a name="std-variety" shape="rect" id="std-variety"></a><div class="pdName"><span class="propdef">{variety}</span></div>
<div class="pdDef">
One of {<span class="enumval">atomic</span>, <span class="enumval">list</span>, <span class="enumval">union</span>}. Required for all <a href="#std" class="compref" shape="rect">Simple Type Definition</a>s
except <a href="#anySimpleType-def" class="termref" shape="rect"><span class="arrow">&#183;</span>anySimpleType<span class="arrow">&#183;</span></a>,
in which it is <b><i>absent</i></b>.</div>
</div>
<div class="propDefn"><a name="std-primitive_type_definition" shape="rect" id="std-primitive_type_definition"></a><div class="pdName"><span class="propdef">{primitive type definition}</span></div>
<div class="pdDef">
A <a href="#std" class="compref" shape="rect">Simple Type Definition</a> component. With one exception, required if <a href="#std-variety" class="propref" shape="rect">{variety}</a> is
<b><i>atomic</i></b>, otherwise
<span class="rfc2119">must</span> be <b><i>absent</i></b>. The exception
is
<a href="#anyAtomicType-def" class="termref" shape="rect"><span class="arrow">&#183;</span>anyAtomicType<span class="arrow">&#183;</span></a>, whose
<a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> is <b><i>absent</i></b>.<div class="ownDesc">
<p>If
not <b><i>absent</i></b>, <span class="rfc2119">must</span> be a <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> built-in definition.</p></div>
</div>
</div>
<div class="propDefn"><a name="std-item_type_definition" shape="rect" id="std-item_type_definition"></a><div class="pdName"><span class="propdef">{item type definition}</span></div>
<div class="pdDef">
A <a href="#std" class="compref" shape="rect">Simple Type Definition</a> component. Required if <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>list</i></b>, otherwise
<span class="rfc2119">must</span>
be <b><i>absent</i></b>.<div class="ownDesc">
<p>
The value of this property
<span class="rfc2119">must</span> be
a primitive or ordinary simple type definition
with <a href="#std-variety" class="propref" shape="rect">{variety}</a> = <b><i>atomic</i></b>,
or
an ordinary simple type definition
with <a href="#std-variety" class="propref" shape="rect">{variety}</a> = <b><i>union</i></b>
whose basic members are all atomic;
the value <span class="rfc2119">must not</span> itself be
a list type
(have <a href="#std-variety" class="propref" shape="rect">{variety}</a> = <b><i>list</i></b>)
or have any basic members which are list types.
</p></div>
</div>
</div>
<div class="propDefn"><a name="std-member_type_definitions" shape="rect" id="std-member_type_definitions"></a><div class="pdName"><span class="propdef">{member type definitions}</span></div>
<div class="pdDef">
A sequence of primitive or ordinary <a href="#std" class="compref" shape="rect">Simple Type Definition</a> components. <div class="ownDesc">
<p><span class="rfc2119">Must</span> be present
(but <span class="rfc2119">may</span> be empty)
if <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>union</i></b>,
otherwise <span class="rfc2119">must</span> be <b><i>absent</i></b>.</p><p>The sequence may contain any primitive or ordinary simple type definition, but
<span class="rfc2119">must not</span> contain any special type definitions.</p></div>
</div>
</div>
</div></div>
</div>
</div>
<p>
Simple type definitions are
identified by their <a href="#std-name" class="propref" shape="rect">{name}</a> and <a href="#std-target_namespace" class="propref" shape="rect">{target namespace}</a>.&#160; Except for
anonymous <a href="#std" class="compref" shape="rect">Simple Type Definition</a>s (those
with no
<a href="#std-name" class="propref" shape="rect">{name}</a>), <a href="#std" class="compref" shape="rect">Simple Type Definition</a>s <span class="rfc2119">must</span> be uniquely identified within a
schema.
Within a valid schema,
each <a href="#std" class="compref" shape="rect">Simple Type Definition</a> uniquely determines
one datatype. The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>,
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>, etc., of a <a href="#std" class="compref" shape="rect">Simple Type Definition</a>
are the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>, etc., of the datatype
uniquely determined (or "defined")
by that <a href="#std" class="compref" shape="rect">Simple Type Definition</a>.
</p><p>
If <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>
then the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the datatype
defined will be a subset of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> (which is a subset
of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of
<a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a>). If
<a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>
then the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the datatype
defined will be the set of
(possibly empty)
finite-length sequences
of values from the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a>.
If <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
then the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the datatype
defined will be a subset
(possibly an improper subset) of
the union of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a>
of each
<a href="#std" class="compref" shape="rect">Simple Type Definition</a>
in <a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a>.
</p><p>
If <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>
then the <a href="#std-variety" class="propref" shape="rect">{variety}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
must be <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>,
unless the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
is <a href="#anySimpleType" shape="rect">anySimpleType</a>.
If <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>
then the <a href="#std-variety" class="propref" shape="rect">{variety}</a> of <a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a>
must be either <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> or <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, and if <a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a> is <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
then all its <a href="#dt-basicmember" class="termref" shape="rect"><span class="arrow">&#183;</span>basic members<span class="arrow">&#183;</span></a>
<span class="rfc2119">must</span> be <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>.
If <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
then
<a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a> must be a list of <a href="#std" class="compref" shape="rect">Simple Type Definition</a>s.</p><p>The <a href="#std-facets" class="propref" shape="rect">{facets}</a> property
determines the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of the datatype
being defined by imposing constraints which must be satisfied by values and
<a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a>.
</p><p>
The <a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a> property provides some
basic information about the datatype being defined: its cardinality,
whether an ordering is defined for it by this specification,
whether it has upper and lower bounds, and whether it is numeric.
</p><p>
If <a href="#std-final" class="propref" shape="rect">{final}</a> is the empty set then the type can be used
in deriving other types; the explicit values <b><i>restriction</i></b>,
<b><i>list</i></b> and <b><i>union</i></b> prevent further derivations of <a href="#std" class="compref" shape="rect">Simple Type Definition</a>s
by <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a>, <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> and
<a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> respectively; the explicit value <b><i>extension</i></b> prevents any derivation of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#ctd" class="compref" shape="rect">Complex Type Definitions</a> by extension.
</p><p>The <a href="#std-context" class="propref" shape="rect">{context}</a>
property is only relevant for anonymous type definitions, for which its value
is the component in which this type definition appears as the value of a
property, e.g. <a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a> or <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</p></div><div class="div3">
<h4><a name="xr-defn" id="xr-defn" shape="rect"></a>4.1.2 XML Representation of Simple Type Definition Schema Components</h4><p>
The XML representation for a <a href="#std" class="compref" shape="rect">Simple Type Definition</a> schema component
is a <a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>simpleType</code>&#160;Element Information Item et al.</div><div class="reprBody"><p class="element-syntax-1"><a id="element-simpleType" name="element-simpleType" shape="rect">&lt;simpleType</a><br clear="none" />&#160;&#160;final =
(<var>#all</var> | List of (<var>list</var> | <var>union</var> | <var>restriction</var> | <var>extension</var>))
<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;name = <a href="#NCName" shape="rect">NCName</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?, (<a href="#element-restriction" class="eltref" shape="rect">restriction</a> | <a href="#element-list" class="eltref" shape="rect">list</a> | <a href="#element-union" class="eltref" shape="rect">union</a>))<br clear="none" />&lt;/simpleType&gt;</p><p class="element-syntax"><a id="element-restriction" name="element-restriction" shape="rect">&lt;restriction</a><br clear="none" />&#160;&#160;base = <a href="#QName" shape="rect">QName</a><br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?, (<a href="#element-simpleType" class="eltref" shape="rect">simpleType</a>?, (<a href="#element-minExclusive" class="eltref" shape="rect">minExclusive</a> | <a href="#element-minInclusive" class="eltref" shape="rect">minInclusive</a> | <a href="#element-maxExclusive" class="eltref" shape="rect">maxExclusive</a> | <a href="#element-maxInclusive" class="eltref" shape="rect">maxInclusive</a> | <a href="#element-totalDigits" class="eltref" shape="rect">totalDigits</a> | <a href="#element-fractionDigits" class="eltref" shape="rect">fractionDigits</a> | <!--*** <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-maxScale" class="eltref" shape="rect">maxScale</a> | <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-minScale" class="eltref" shape="rect">minScale</a> | ***--><a href="#element-length" class="eltref" shape="rect">length</a> | <a href="#element-minLength" class="eltref" shape="rect">minLength</a> | <a href="#element-maxLength" class="eltref" shape="rect">maxLength</a> | <a href="#element-enumeration" class="eltref" shape="rect">enumeration</a> | <a href="#element-whiteSpace" class="eltref" shape="rect">whiteSpace</a> | <a href="#element-pattern" class="eltref" shape="rect">pattern</a> | <a href="#element-assertion" class="eltref" shape="rect">assertion</a> | <a href="#element-explicitTimezone" class="eltref" shape="rect">explicitTimezone</a> | <em>{any with namespace: ##other}</em>)*))<br clear="none" />&lt;/restriction&gt;</p><p class="element-syntax"><a id="element-list" name="element-list" shape="rect">&lt;list</a><br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;itemType = <a href="#QName" shape="rect">QName</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?, <a href="#element-simpleType" class="eltref" shape="rect">simpleType</a>?)<br clear="none" />&lt;/list&gt;</p><p class="element-syntax"><a id="element-union" name="element-union" shape="rect">&lt;union</a><br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;memberTypes = List of <a href="#QName" shape="rect">QName</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?, <a href="#element-simpleType" class="eltref" shape="rect">simpleType</a>*)<br clear="none" />&lt;/union&gt;</p><div class="reprcompmulti"><div class="reprHead"><a href="#dc-defn" shape="rect">Simple Type Definition</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-name" class="propref" shape="rect">{name}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the
<code>name</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if
present on the <a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a> element,
otherwise <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-null" shape="rect">absent</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-target_namespace" class="propref" shape="rect">{target namespace}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the
<code>targetNamespace</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
of the parent <code>schema</code> element information
item, if present,
otherwise <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-null" shape="rect">absent</a>.</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a></div><div class="mapRepr">
The appropriate <b>case</b> among the following:<div class="constraintlist"><div class="clnumber">1 <b>If </b>the <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a> alternative is chosen, <b>then </b>the type definition <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#src-resolve" shape="rect">resolved</a> to by the
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>base</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> of <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a>,
if present, otherwise the
type definition corresponding to the <a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a> among
the <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a> of <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a>.</div><div class="clnumber">2 <b>If </b>the <a href="#element-list" class="eltref" shape="rect">&lt;list&gt;</a> or <a href="#element-union" class="eltref" shape="rect">&lt;union&gt;</a> alternative is chosen, <b>then </b><a href="#anySimpleType-def" class="termref" shape="rect"><span class="arrow">&#183;</span>anySimpleType<span class="arrow">&#183;</span></a>.</div></div>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-final" class="propref" shape="rect">{final}</a></div><div class="mapRepr">
A subset of
<code>{</code><b><i>restriction</i></b>, <b><i>extension</i></b>, <b><i>list</i></b>,
<b><i>union</i></b><code>}</code>, determined as follows.
<span class="termdef"><a name="lt-vs" id="lt-vs" title="" shape="rect">[Definition:]&#160;&#160;</a>Let
<b>FS</b> be
the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the
<code>final</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>,
if present, otherwise the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the
<code>finalDefault</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> of the ancestor
<code>schema</code> element,
if present, otherwise the empty string.</span> Then the property value is
the appropriate <b>case</b> among the following:<div class="constraintlist"><div class="clnumber">1 <b>If </b><a href="#lt-vs" class="termref" shape="rect"><span class="arrow">&#183;</span>FS<span class="arrow">&#183;</span></a> is the empty string, <b>then </b>the empty set;</div><div class="clnumber">2 <b>If </b><a href="#lt-vs" class="termref" shape="rect"><span class="arrow">&#183;</span>FS<span class="arrow">&#183;</span></a> is '<code>#all</code>', <b>then </b><code>{</code><b><i>restriction</i></b>, <b><i>extension</i></b>, <b><i>list</i></b>,
<b><i>union</i></b><code>}</code>;</div><div class="clnumber">3 <b>otherwise </b>Consider <a href="#lt-vs" class="termref" shape="rect"><span class="arrow">&#183;</span>FS<span class="arrow">&#183;</span></a> as
a space-separated list, and include <b><i>restriction</i></b> if
'<code>restriction</code>' is in that list, and similarly for
<b><i>extension</i></b>, <b><i>list</i></b> and <b><i>union</i></b>.
</div></div>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-context" class="propref" shape="rect">{context}</a></div><div class="mapRepr">
The appropriate <b>case</b> among the following:<div class="constraintlist"><div class="clnumber">1 <b>If </b>the
<code>name</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> is present, <b>then </b><a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-null" shape="rect">absent</a></div><div class="clnumber">2 <b>otherwise </b>
the appropriate <b>case</b> among the following:<div class="constraintlist"><div class="clnumber">2.1 <b>If </b>the parent element information item is <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-attribute" class="eltref" shape="rect">&lt;attribute&gt;</a>, <b>then </b>the corresponding <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#ad" class="compref" shape="rect">Attribute Declaration</a></div><div class="clnumber">2.2 <b>If </b>the parent element information item is <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-element" class="eltref" shape="rect">&lt;element&gt;</a>, <b>then </b>the corresponding <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#ed" class="compref" shape="rect">Element Declaration</a></div><div class="clnumber">2.3 <b>If </b>the parent element information item is <a href="#element-list" class="eltref" shape="rect">&lt;list&gt;</a> or <a href="#element-union" class="eltref" shape="rect">&lt;union&gt;</a>, <b>then </b>the <a href="#std" class="compref" shape="rect">Simple Type Definition</a>
corresponding to the grandparent <a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a> element information item</div><div class="clnumber">2.4 <b>otherwise </b>(the parent element information item is <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a>),
the appropriate <b>case</b> among the following:<div class="constraintlist"><div class="clnumber">2.4.1 <b>If </b>the grandparent element information item is <a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a>, <b>then </b>the <a href="#std" class="compref" shape="rect">Simple Type Definition</a>
corresponding to the grandparent</div><div class="clnumber">2.4.2 <b>otherwise </b>(the grandparent element information item is <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-simpleContent" class="eltref" shape="rect">&lt;simpleContent&gt;</a>),
the <a href="#std" class="compref" shape="rect">Simple Type Definition</a> which is the
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#ctd-content_type" class="xpropref" shape="rect">{content type}</a> of the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#ctd" class="compref" shape="rect">Complex Type Definition</a>
corresponding to the great-grandparent <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-complexType" class="eltref" shape="rect">&lt;complexType&gt;</a> element information item.</div></div>
</div></div>
</div></div>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-variety" class="propref" shape="rect">{variety}</a></div><div class="mapRepr">If
the <a href="#element-list" class="eltref" shape="rect">&lt;list&gt;</a> alternative is chosen,
then <b><i>list</i></b>, otherwise if the <a href="#element-union" class="eltref" shape="rect">&lt;union&gt;</a> alternative is
chosen, then <b><i>union</i></b>, otherwise (the <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a>
alternative is chosen) the <a href="#std-variety" class="propref" shape="rect">{variety}</a>
of the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-facets" class="propref" shape="rect">{facets}</a></div><div class="mapRepr">
The appropriate <b>case</b> among the following:<div class="constraintlist"><div class="clnumber">1 <b>If </b>the <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a> alternative is chosen, <b>then </b>the set of <a href="#f" class="compref" shape="rect">Constraining Facet</a> components
obtained by
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-facets-overlay" shape="rect">overlaying</a>
the <a href="#std-facets" class="propref" shape="rect">{facets}</a> of the
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> with the
set of <a href="#f" class="compref" shape="rect">Constraining Facet</a> components corresponding to those
<a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a> of <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a> which specify facets, as
defined in <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#st-restrict-facets" shape="rect">Schema Component Constraint: Simple Type Restriction (Facets)
</a>.</div><div class="clnumber">2 <b>If </b>the <a href="#element-list" class="eltref" shape="rect">&lt;list&gt;</a> alternative is chosen, <b>then </b>a set with one member, a <a href="#f-w" class="compref" shape="rect">whiteSpace</a> facet with
<a href="#f-w-value" class="propref" shape="rect">{value}</a> = <b><i>collapse</i></b> and <a href="#f-w-fixed" class="propref" shape="rect">{fixed}</a> = <b><i>true</i></b>.</div><div class="clnumber">3 <b>otherwise </b>the empty set</div></div>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a></div><div class="mapRepr">Based on
<a href="#std-variety" class="propref" shape="rect">{variety}</a>, <a href="#std-facets" class="propref" shape="rect">{facets}</a>,
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> and <a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a>, a set of <a href="#ff" class="compref" shape="rect">Fundamental Facet</a> components, one
each as specified in <a href="#dc-ordered" shape="rect">The ordered Schema Component (&#167;4.2.1.1)</a>, <a href="#dc-bounded" shape="rect">The bounded Schema Component (&#167;4.2.2.1)</a>,
<a href="#dc-cardinality" shape="rect">The cardinality Schema Component (&#167;4.2.3.1)</a> and <a href="#dc-numeric" shape="rect">The numeric Schema Component (&#167;4.2.4.1)</a>.</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-set" shape="rect">annotation mapping</a> of the set of elements containing the
<a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a>, and
the <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a>, the
<a href="#element-list" class="eltref" shape="rect">&lt;list&gt;</a>, or the <a href="#element-union" class="eltref" shape="rect">&lt;union&gt;</a>
<a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[child]</a>,
whichever is present,
as defined in section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div><div class="reprdep">
<span class="termdef"><a name="std-ancestor" id="std-ancestor" title="" shape="rect">[Definition:]&#160;&#160;</a>The
<b>ancestors</b> of a
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#td" shape="rect">type definition</a> are its
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> and the
<a href="#std-ancestor" class="termref" shape="rect"><span class="arrow">&#183;</span>ancestors<span class="arrow">&#183;</span></a> of its
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</span>
(The ancestors of a
<a href="#std" class="compref" shape="rect">Simple Type Definition</a> <var>T</var> in the type hierarchy are themselves
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#td" shape="rect">type definitions</a>; they are distinct from
the XML elements which may be ancestors, in the XML document
hierarchy, of the <a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a> element which
declares <var>T</var>.)
</div><div class="reprdep">If the <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>atomic</i></b>, the following additional property
mapping also applies:</div><div class="reprcompmulti"><div class="reprHead"><a href="#xr-defn" shape="rect">Atomic Simple Type Definition</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a></div><div class="mapRepr">From among the <a href="#std-ancestor" class="termref" shape="rect"><span class="arrow">&#183;</span>ancestors<span class="arrow">&#183;</span></a> of this <a href="#std" class="compref" shape="rect">Simple Type Definition</a>, that <a href="#std" class="compref" shape="rect">Simple Type Definition</a> which corresponds to a <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatype.<!--* Force break / clear, to avoid border cutting off property name * -->
<br clear="all" />
</div><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
An electronic commerce schema might define a datatype called
'<code>SKU</code>'
(the barcode number that appears on products) from the
<a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatype <a href="#string" shape="rect">string</a> by
supplying a value for the <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a> facet.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='SKU'&gt;
&lt;restriction base='string'&gt;
&lt;pattern value='\d{3}-[A-Z]{2}'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div><div class="exampleWrapper">
<div class="p">
In this case, '<code>SKU</code>' is the name of the new
<a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a> datatype, <a href="#string" shape="rect">string</a> is
its <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>
and
<a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a> is the facet.
</div></div></div><div class="reprdep">If the <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>list</i></b>, the following
additional property mappings also apply:</div><div class="reprcompmulti"><div class="reprHead"><a href="#xr-defn" shape="rect">List Simple Type Definition</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a></div><div class="mapRepr">
The appropriate <b>case</b> among the following:<div class="constraintlist"><div class="clnumber">1 <b>If </b>the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> is <a href="#anySimpleType-def" class="termref" shape="rect"><span class="arrow">&#183;</span>anySimpleType<span class="arrow">&#183;</span></a>, <b>then </b>the <a href="#std" class="compref" shape="rect">Simple Type Definition</a> (a) <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#src-resolve" shape="rect">resolved</a> to by the
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>itemType</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> of <a href="#element-list" class="eltref" shape="rect">&lt;list&gt;</a>,
or (b)
corresponding to the <a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a> among
the <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a> of <a href="#element-list" class="eltref" shape="rect">&lt;list&gt;</a>, whichever is present.
<div class="note"><div class="p"><b>Note:</b> In this
case, a <a href="#element-list" class="eltref" shape="rect">&lt;list&gt;</a> element will invariably be present; it will
invariably have either an <code>itemType</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> or a <a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[child]</a>, but not both.</div></div>
</div><div class="clnumber">2 <b>otherwise </b>(that is, the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> is not <a href="#anySimpleType-def" class="termref" shape="rect"><span class="arrow">&#183;</span>anySimpleType<span class="arrow">&#183;</span></a>), the <a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a> of the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
<div class="note"><div class="p"><b>Note:</b> In this case, a <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a> element will invariably be present.</div></div></div></div>
</div><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
A system might want to store lists of floating point values.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='listOfFloat'&gt;
&lt;list itemType='float'/&gt;
&lt;/simpleType&gt;
</pre></div><div class="exampleWrapper">
<div class="p">
In this case, <em>listOfFloat</em> is the name of the new
<a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a> datatype, <a href="#float" shape="rect">float</a> is its
<a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> and <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> is the
derivation method.
</div></div></div><div class="reprdep">If the <a href="#std-variety" class="propref" shape="rect">{variety}</a> is
<b><i>union</i></b>, the following
additional property mappings also apply:</div><div class="reprcompmulti"><div class="reprHead"><a href="#xr-defn" shape="rect">Union Simple Type Definition</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a></div><div class="mapRepr">
The appropriate <b>case</b> among the following:<div class="constraintlist"><div class="clnumber">1 <b>If </b>the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> is
<a href="#anySimpleType-def" class="termref" shape="rect"><span class="arrow">&#183;</span>anySimpleType<span class="arrow">&#183;</span></a>, <b>then </b>the sequence of (a) the <a href="#std" class="compref" shape="rect">Simple Type Definition</a>s
(a) <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#src-resolve" shape="rect">resolved</a> to by the items in the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the
<code>memberTypes</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> of <a href="#element-union" class="eltref" shape="rect">&lt;union&gt;</a>, if
any, and (b) those corresponding to the <a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a>s
among the <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a> of <a href="#element-union" class="eltref" shape="rect">&lt;union&gt;</a>, if any, in order.
<div class="note"><div class="p"><b>Note:</b> In this case, a
<a href="#element-union" class="eltref" shape="rect">&lt;union&gt;</a> element will invariably be
present; it will invariably have either a <code>memberTypes</code>
<a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> or one or more <a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a>,
or both.</div></div>
</div><div class="clnumber">2 <b>otherwise </b>(that is, the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> is not <a href="#anySimpleType-def" class="termref" shape="rect"><span class="arrow">&#183;</span>anySimpleType<span class="arrow">&#183;</span></a>), the <a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a> of the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
<div class="note"><div class="p"><b>Note:</b> In this case, a <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a> element will invariably
be present.</div></div></div></div>
</div><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">As an example, taken from a typical display oriented text markup language,
one might want to express font sizes as an integer between 8 and 72, or with
one of the tokens "small", "medium" or "large".&#160; The <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
<a href="#std" class="compref" shape="rect">Simple Type Definition</a>
below would accomplish that.</div></div><div class="exampleInner">
<pre xml:space="preserve">
&lt;xsd:attribute name="size"&gt;
&lt;xsd:simpleType&gt;
&lt;xsd:union&gt;
&lt;xsd:simpleType&gt;
&lt;xsd:restriction base="xsd:positiveInteger"&gt;
&lt;xsd:minInclusive value="8"/&gt;
&lt;xsd:maxInclusive value="72"/&gt;
&lt;/xsd:restriction&gt;
&lt;/xsd:simpleType&gt;
&lt;xsd:simpleType&gt;
&lt;xsd:restriction base="xsd:NMTOKEN"&gt;
&lt;xsd:enumeration value="small"/&gt;
&lt;xsd:enumeration value="medium"/&gt;
&lt;xsd:enumeration value="large"/&gt;
&lt;/xsd:restriction&gt;
&lt;/xsd:simpleType&gt;
&lt;/xsd:union&gt;
&lt;/xsd:simpleType&gt;
&lt;/xsd:attribute&gt;
</pre></div><div class="exampleInner">
<pre xml:space="preserve">
&lt;p&gt;
&lt;font size='large'&gt;A header&lt;/font&gt;
&lt;/p&gt;
&lt;p&gt;
&lt;font size='12'&gt;this is a test&lt;/font&gt;
&lt;/p&gt;
</pre></div></div></div></div><p>
A datatype can be
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a>
from a <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatype or
an
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatype by one of three means:
by <em><a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a></em>,
by <em><a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a></em>
or by
<em><a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a></em>.</p></div><div class="div3">
<h4><a name="defn-rep-constr" id="defn-rep-constr" shape="rect"></a>4.1.3 Constraints on XML Representation of Simple Type Definition</h4><div class="constraintnote"><a id="src-list-itemType-or-simpleType" name="src-list-itemType-or-simpleType" shape="rect"></a><b>Schema Representation Constraint: itemType attribute or simpleType child</b><br clear="none" /><div class="constraint"><div class="p">
Either the <code>itemType</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> or the
<a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[child]</a> of the <a href="#element-list" class="eltref" shape="rect">&lt;list&gt;</a> element
must be present, but not both.
</div></div></div><div class="constraintnote"><a id="src-restriction-base-or-simpleType" name="src-restriction-base-or-simpleType" shape="rect"></a><b>Schema Representation Constraint: base attribute or simpleType child</b><br clear="none" /><div class="constraint"><div class="p">
Either the <code>base</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> or the
<code>simpleType</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[child]</a> of the <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a>
element must be present, but not both.
</div></div></div><div class="constraintnote"><a id="src-union-memberTypes-or-simpleTypes" name="src-union-memberTypes-or-simpleTypes" shape="rect"></a><b>Schema Representation Constraint: memberTypes attribute or simpleType children</b><br clear="none" /><div class="constraint"><div class="p">
Either the <code>memberTypes</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> of the <a href="#element-union" class="eltref" shape="rect">&lt;union&gt;</a>
element must be non-empty or
there must be at least one <code>simpleType</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[child]</a>.
</div></div></div></div><div class="div3">
<h4><a name="defn-validation-rules" id="defn-validation-rules" shape="rect"></a>4.1.4 Simple Type Definition Validation Rules</h4><div class="constraintnote"><a id="cvc-facet-valid" name="cvc-facet-valid" shape="rect"></a><b>Validation Rule: Facet Valid</b><br clear="none" /><div class="constraint"><div class="p">
A value in a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> is facet-valid with
respect to a <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facet<span class="arrow">&#183;</span></a> component
if and only if:
</div><div class="constraintlist"><div class="clnumber">1 <span class="p">
the value is facet-valid with respect to the particular
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facet<span class="arrow">&#183;</span></a> as specified below.
</span></div>
</div></div></div><div class="constraintnote"><a id="cvc-datatype-valid" name="cvc-datatype-valid" shape="rect"></a><b>Validation Rule: Datatype Valid</b><br clear="none" /><div class="constraint"><div class="p">
A <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> is datatype-valid with respect to a <a href="#std" class="compref" shape="rect">Simple Type Definition</a>
if and only if it is a member of the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of the
corresponding datatype.</div></div></div><div class="note"><div class="p"><b>Note:</b>
Since every value in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> is denoted by some
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a>, and every <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> in the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> maps to
some value, the requirement that the <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> be in the
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> entails the requirement that the value it
maps to should fulfill all of the constraints imposed by the
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of the datatype. If
the datatype is a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>, the Datatype Valid constraint also
entails that each whitespace-delimited token in the list
be datatype-valid against the <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> of the list.
If the datatype is a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, the Datatype Valid constraint
entails that the <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> be datatype-valid against at
least one of the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a>.</div><div class="p">That is, the constraints on <a href="#std" class="compref" shape="rect">Simple Type Definition</a>s and on
datatype <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derivation<span class="arrow">&#183;</span></a> defined in this specification have as a
consequence that a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> <var>L</var> is datatype-valid with
respect to a <a href="#std" class="compref" shape="rect">Simple Type Definition</a> <var>T</var> if and only if
either <var>T</var> corresponds to a <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a> datatype or
<b>all</b> of the following are true:<div class="constraintlist"><div class="clnumber">1<a id="dv_pattern" name="dv_pattern" shape="rect"> </a><span class="p">If there is a <a href="#f-p" class="compref" shape="rect">pattern</a> in <a href="#std-facets" class="propref" shape="rect">{facets}</a>, then
<var>L</var> is <a href="#cvc-pattern-valid" shape="rect">pattern valid (&#167;4.3.4.4)</a> with respect to the
<a href="#f-p" class="compref" shape="rect">pattern</a>.
If there are other <a href="#dt-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical<span class="arrow">&#183;</span></a> facets
in <a href="#std-facets" class="propref" shape="rect">{facets}</a>, then <var>L</var> is facet-valid with respect
to them.</span></div>
<div class="clnumber">2<a id="dv_lv" name="dv_lv" shape="rect"> </a><!--* no span class='p' possible here *-->The appropriate case among the following is true:
<div class="constraintlist"><div class="clnumber">2.1<a id="dv_atomic" name="dv_atomic" shape="rect"> </a><span class="p">If the <a href="#std-variety" class="propref" shape="rect">{variety}</a> of <var>T</var> is <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>,
then <var>L</var> is in the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of the
<a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> of <var>T</var>, as defined in the
appropriate documentation.
Let <var>V</var> be the
member of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the
<a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> of <var>T</var> mapped to by <var>L</var>,
as defined in the appropriate documentation.</span><div class="note"><div class="p"><b>Note:</b> For <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitives<span class="arrow">&#183;</span></a>, the
"appropriate documentation" is the relevant
section of this specification. For <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitives<span class="arrow">&#183;</span></a>,
it is the normative specification of the <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>, which
will typically be included in, or referred to from, the
implementation's documentation.</div></div></div>
<div class="clnumber">2.2<a id="dv_list" name="dv_list" shape="rect"> </a><span class="p">If the <a href="#std-variety" class="propref" shape="rect">{variety}</a> of <var>T</var> is <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>, then
each space-delimited substring of <var>L</var> is Datatype Valid with
respect to the <a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a> of <var>T</var>. Let
<var>V</var> be the sequence consisting of the values identified by
Datatype Valid for each of those substrings, in order.</span></div>
<div class="clnumber">2.3<a id="dv_union" name="dv_union" shape="rect"> </a><span class="p">If the <a href="#std-variety" class="propref" shape="rect">{variety}</a> of <var>T</var> is <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>,
then <var>L</var> is Datatype Valid with respect to at least one
member of the <a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a>
of <var>T</var>. Let <var>B</var> be the <a href="#dt-active-basic-member" class="termref" shape="rect"><span class="arrow">&#183;</span>active basic member<span class="arrow">&#183;</span></a> of <var>T</var> for <var>L</var>. Let
<var>V</var> be the value identified by Datatype Valid for
<var>L</var> with respect to <var>B</var>.</span></div>
</div>
</div>
<div class="clnumber">3<a id="dv_vfacets" name="dv_vfacets" shape="rect"> </a><span class="p"><var>V</var>, as determined by the
appropriate sub-clause of clause <a href="#dv_lv" shape="rect">2</a> above,
is <a href="#cvc-facet-valid" shape="rect">Facet Valid (&#167;4.1.4)</a> with respect to each member of the
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <var>T</var> which is a
<a href="#dt-value-based" class="termref" shape="rect"><span class="arrow">&#183;</span>value-based<span class="arrow">&#183;</span></a> (and not a <a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a>
or <a href="#dt-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical<span class="arrow">&#183;</span></a>)
facet.</span></div>
</div>
</div><div class="p">Note that <a href="#f-w" class="compref" shape="rect">whiteSpace</a> facets and
other <a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> facets
do not take part in checking Datatype
Valid. In cases where this specification is used in conjunction with
schema-validation of XML documents,
such facets are used to
normalize infoset values <em>before</em> the normalized results
are checked for datatype validity. In the case of unions the
<a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> facets to use are those
associated with <var>B</var> in
clause <a href="#dv_union" shape="rect">2.3</a> above.
When more than one <a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> facet
applies, the <a href="#f-w" class="compref" shape="rect">whiteSpace</a> facet is applied first; the order in
which <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> facets
are applied is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a>.</div></div></div><div class="div3">
<h4><a name="defn-coss" id="defn-coss" shape="rect"></a>4.1.5 Constraints on Simple Type Definition Schema Components</h4><div class="constraintnote"><a id="cos-applicable-facets" name="cos-applicable-facets" shape="rect"></a><b>Schema Component Constraint: Applicable Facets</b><br clear="none" /><div class="constraint"><div class="p">
The <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> which are allowed to be members of <a href="#std-facets" class="propref" shape="rect">{facets}</a>
depend on
the <a href="#std-variety" class="propref" shape="rect">{variety}</a> and <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> of the type, as
follows:
</div><p>
If <a href="#std-variety" shape="rect">{variety}</a> is <b><i>absent</i></b>,
then no facets are applicable.
(This is true for
<a href="#anySimpleType-def" shape="rect">anySimpleType</a>.)
</p>
<p>
If <a href="#std-variety" shape="rect">{variety}</a> is <a href="#dt-list" shape="rect">list</a>,
then the applicable facets are
<a href="#dc-assertions" shape="rect">assertions</a>,
<a href="#dt-length" shape="rect">length</a>,
<a href="#dt-minLength" shape="rect">minLength</a>,
<a href="#dt-maxLength" shape="rect">maxLength</a>,
<a href="#dt-pattern" shape="rect">pattern</a>,
<a href="#dt-enumeration" shape="rect">enumeration</a>, and
<a href="#dt-whiteSpace" shape="rect">whiteSpace</a>.
</p>
<p>
If <a href="#std-variety" shape="rect">{variety}</a> is
<a href="#dt-union" shape="rect">union</a>, then
the applicable facets are
<a href="#dt-pattern" shape="rect">pattern</a>,
<a href="#dt-enumeration" shape="rect">enumeration</a>, and
<a href="#dc-assertions" shape="rect">assertions</a>.
</p>
<p>
If <a href="#std-variety" shape="rect">{variety}</a> is <a href="#dt-atomic" shape="rect">atomic</a>,
and <a href="#std-primitive_type_definition" shape="rect">{primitive type definition}</a>
is <b><i>absent</i></b>
then no facets are applicable.
(This is true for
<a href="#anyAtomicType-def" shape="rect">anyAtomicType</a>.)
</p><p>
In all other cases (<a href="#std-variety" shape="rect">{variety}</a> is
<a href="#dt-atomic" shape="rect">atomic</a> and
<a href="#std-primitive_type_definition" shape="rect">{primitive type definition}</a>
is not <b><i>absent</i></b>), then the applicable facets are
shown in the table below.
</p><table border="1" bgcolor="#bedce6">
<tr><th rowspan="1" colspan="1"><a href="#std-primitive_type_definition" shape="rect">{primitive type definition}</a></th><th rowspan="1" colspan="1">applicable <a href="#std-facets" shape="rect">{facets}</a></th></tr>
<tr><td rowspan="1" colspan="1"><a href="#string" shape="rect">string</a></td><td rowspan="1" colspan="1"><a href="#dc-length" shape="rect">length</a>, <a href="#dc-minLength" shape="rect">minLength</a>, <a href="#dc-maxLength" shape="rect">maxLength</a>, <a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-assertions" shape="rect">assertions</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#boolean" shape="rect">boolean</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-assertions" shape="rect">assertions</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#float" shape="rect">float</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#double" shape="rect">double</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#decimal" shape="rect">decimal</a></td><td rowspan="1" colspan="1"><a href="#dc-totalDigits" shape="rect">totalDigits</a>, <a href="#dc-fractionDigits" shape="rect">fractionDigits</a>, <a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#duration" shape="rect">duration</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#dateTime" shape="rect">dateTime</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a>, <a href="#dc-explicitTimezone" shape="rect">explicitTimezone</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#time" shape="rect">time</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a>, <a href="#dc-explicitTimezone" shape="rect">explicitTimezone</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#date" shape="rect">date</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a>, <a href="#dc-explicitTimezone" shape="rect">explicitTimezone</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#gYearMonth" shape="rect">gYearMonth</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a>, <a href="#dc-explicitTimezone" shape="rect">explicitTimezone</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#gYear" shape="rect">gYear</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a>, <a href="#dc-explicitTimezone" shape="rect">explicitTimezone</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#gMonthDay" shape="rect">gMonthDay</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a>, <a href="#dc-explicitTimezone" shape="rect">explicitTimezone</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#gDay" shape="rect">gDay</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a>, <a href="#dc-explicitTimezone" shape="rect">explicitTimezone</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#gMonth" shape="rect">gMonth</a></td><td rowspan="1" colspan="1"><a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-maxInclusive" shape="rect">maxInclusive</a>, <a href="#dc-maxExclusive" shape="rect">maxExclusive</a>, <a href="#dc-minInclusive" shape="rect">minInclusive</a>, <a href="#dc-minExclusive" shape="rect">minExclusive</a>, <a href="#dc-assertions" shape="rect">assertions</a>, <a href="#dc-explicitTimezone" shape="rect">explicitTimezone</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#hexBinary" shape="rect">hexBinary</a></td><td rowspan="1" colspan="1"><a href="#dc-length" shape="rect">length</a>, <a href="#dc-minLength" shape="rect">minLength</a>, <a href="#dc-maxLength" shape="rect">maxLength</a>, <a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-assertions" shape="rect">assertions</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#base64Binary" shape="rect">base64Binary</a></td><td rowspan="1" colspan="1"><a href="#dc-length" shape="rect">length</a>, <a href="#dc-minLength" shape="rect">minLength</a>, <a href="#dc-maxLength" shape="rect">maxLength</a>, <a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-assertions" shape="rect">assertions</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#anyURI" shape="rect">anyURI</a></td><td rowspan="1" colspan="1"><a href="#dc-length" shape="rect">length</a>, <a href="#dc-minLength" shape="rect">minLength</a>, <a href="#dc-maxLength" shape="rect">maxLength</a>, <a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-assertions" shape="rect">assertions</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#QName" shape="rect">QName</a></td><td rowspan="1" colspan="1"><a href="#dc-length" shape="rect">length</a>, <a href="#dc-minLength" shape="rect">minLength</a>, <a href="#dc-maxLength" shape="rect">maxLength</a>, <a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-assertions" shape="rect">assertions</a></td></tr>
<tr><td rowspan="1" colspan="1"><a href="#NOTATION" shape="rect">NOTATION</a></td><td rowspan="1" colspan="1"><a href="#dc-length" shape="rect">length</a>, <a href="#dc-minLength" shape="rect">minLength</a>, <a href="#dc-maxLength" shape="rect">maxLength</a>, <a href="#dc-pattern" shape="rect">pattern</a>, <a href="#dc-enumeration" shape="rect">enumeration</a>, <a href="#dc-whiteSpace" shape="rect">whiteSpace</a>, <a href="#dc-assertions" shape="rect">assertions</a></td></tr>
</table><div class="note"><div class="p"><b>Note:</b> For any <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> primitive types,
it is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> which constraining facets are
applicable to them.
</div><div class="p">Similarly, for any <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> constraining facets,
it is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> which <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitives<span class="arrow">&#183;</span></a> they
apply to.
</div></div></div></div></div><div class="div3">
<h4><a name="builtin-stds" id="builtin-stds" shape="rect"></a>4.1.6 Built-in Simple Type Definitions</h4><p>The <a href="#std" class="compref" shape="rect">Simple Type Definition</a> of <a href="#anySimpleType" shape="rect">anySimpleType</a> is
present in every schema.&#160; It has the following properties:</p><div class="scInstance"><div class="scHead"><a id="anySimpleType-def" name="anySimpleType-def" shape="rect">Simple type definition of <code>anySimpleType</code></a></div><div class="pvlist"><div class="pvpair"><div class="pvProp"><b>Property</b></div><div class="pvVal"><b>Value</b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-name" class="propref" shape="rect">{name}</a></div><div class="pvVal">'<code>anySimpleType</code>'</div></div><div class="pvpair"><div class="pvProp"><a href="#std-target_namespace" class="propref" shape="rect">{target namespace}</a></div><div class="pvVal">'<code>http://www.w3.org/2001/XMLSchema</code>'</div></div><div class="pvpair"><div class="pvProp"><a href="#std-final" class="propref" shape="rect">{final}</a></div><div class="pvVal">The empty set</div></div><div class="pvpair"><div class="pvProp"><a href="#std-context" class="propref" shape="rect">{context}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a></div><div class="pvVal"><a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#any-type-itself" shape="rect">anyType</a></div></div><div class="pvpair"><div class="pvProp"><a href="#std-facets" class="propref" shape="rect">{facets}</a></div><div class="pvVal">The empty set</div></div><div class="pvpair"><div class="pvProp"><a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a></div><div class="pvVal">The empty set</div></div><div class="pvpair"><div class="pvProp"><a href="#std-variety" class="propref" shape="rect">{variety}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-annotations" class="propref" shape="rect">{annotations}</a></div><div class="pvVal">The empty sequence</div></div></div></div><p id="ast_radix_omnium">The
definition of <a href="#anySimpleType" shape="rect">anySimpleType</a>
is the root of the Simple Type Definition
hierarchy;
as such it mediates between the other
simple type definitions,
which all eventually trace back to it via their
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> properties,
and the
definition of <b><i>anyType</i></b>,
which is
<em>its</em> <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</p><p>The <a href="#std" class="compref" shape="rect">Simple Type Definition</a> of <a href="#anyAtomicType" shape="rect">anyAtomicType</a> is
present in every schema.&#160; It has the following properties:</p><div class="scInstance"><div class="scHead"><a id="anyAtomicType-def" name="anyAtomicType-def" shape="rect">Simple type definition of <code>anyAtomicType</code></a></div><div class="pvlist"><div class="pvpair"><div class="pvProp"><b>Property</b></div><div class="pvVal"><b>Value</b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-name" class="propref" shape="rect">{name}</a></div><div class="pvVal">'<code>anyAtomicType</code>'</div></div><div class="pvpair"><div class="pvProp"><a href="#std-target_namespace" class="propref" shape="rect">{target namespace}</a></div><div class="pvVal">'<code>http://www.w3.org/2001/XMLSchema</code>'</div></div><div class="pvpair"><div class="pvProp"><a href="#std-final" class="propref" shape="rect">{final}</a></div><div class="pvVal">The empty set</div></div><div class="pvpair"><div class="pvProp"><a href="#std-context" class="propref" shape="rect">{context}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a></div><div class="pvVal"><a href="#anySimpleType" shape="rect">anySimpleType</a></div></div><div class="pvpair"><div class="pvProp"><a href="#std-facets" class="propref" shape="rect">{facets}</a></div><div class="pvVal">The empty set</div></div><div class="pvpair"><div class="pvProp"><a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a></div><div class="pvVal">The empty set</div></div><div class="pvpair"><div class="pvProp"><a href="#std-variety" class="propref" shape="rect">{variety}</a></div><div class="pvVal"><b><i>atomic</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-annotations" class="propref" shape="rect">{annotations}</a></div><div class="pvVal">The empty sequence</div></div></div></div><p>Simple type definitions for all the built-in primitive datatypes,
namely <a href="#string" shape="rect">string</a>,
<a href="#boolean" shape="rect">boolean</a>,
<a href="#float" shape="rect">float</a>,
<a href="#double" shape="rect">double</a>,
<a href="#decimal" shape="rect">decimal</a>,
<a href="#dateTime" shape="rect">dateTime</a>,
<a href="#duration" shape="rect">duration</a>,
<a href="#time" shape="rect">time</a>,
<a href="#date" shape="rect">date</a>,
<a href="#gMonth" shape="rect">gMonth</a>,
<a href="#gMonthDay" shape="rect">gMonthDay</a>,
<a href="#gDay" shape="rect">gDay</a>,
<a href="#gYear" shape="rect">gYear</a>,
<a href="#gYearMonth" shape="rect">gYearMonth</a>,
<a href="#hexBinary" shape="rect">hexBinary</a>,
<a href="#base64Binary" shape="rect">base64Binary</a>,
<a href="#anyURI" shape="rect">anyURI</a>
are present by definition
in every schema.&#160; All have a very similar structure, with only the
<a href="#std-name" class="propref" shape="rect">{name}</a>, the <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> (which is self-referential),
the <a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a>,
and in one case the <a href="#std-facets" class="propref" shape="rect">{facets}</a> varying from one to the
next:</p><div class="scInstance"><div class="scHead"><a id="dummy-def" name="dummy-def" shape="rect">Simple Type Definition corresponding to the built-in primitive datatypes</a></div><div class="pvlist"><div class="pvpair"><div class="pvProp"><b>Property</b></div><div class="pvVal"><b>Value</b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-name" class="propref" shape="rect">{name}</a></div><div class="pvVal">[as appropriate]</div></div><div class="pvpair"><div class="pvProp"><a href="#std-target_namespace" class="propref" shape="rect">{target namespace}</a></div><div class="pvVal">'<code>http://www.w3.org/2001/XMLSchema</code>'</div></div><div class="pvpair"><div class="pvProp"><a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a></div><div class="pvVal">
<a href="#anyAtomicType-def" shape="rect">anyAtomicType Definition</a></div></div><div class="pvpair"><div class="pvProp"><a href="#std-final" class="propref" shape="rect">{final}</a></div><div class="pvVal">The empty set</div></div><div class="pvpair"><div class="pvProp"><a href="#std-variety" class="propref" shape="rect">{variety}</a></div><div class="pvVal"><b><i>atomic</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a></div><div class="pvVal">[this <a href="#std" class="compref" shape="rect">Simple Type Definition</a>
itself]</div></div><div class="pvpair"><div class="pvProp"><a href="#std-facets" class="propref" shape="rect">{facets}</a></div><div class="pvVal">{a <a href="#f-w" class="compref" shape="rect">whiteSpace</a> facet with
<a href="#f-w-value" class="propref" shape="rect">{value}</a> = <b><i>collapse</i></b> and <a href="#f-w-fixed" class="propref" shape="rect">{fixed}</a> = <b><i>true</i></b> in all cases except
<a href="#string" shape="rect">string</a>, which has <a href="#f-w-value" class="propref" shape="rect">{value}</a> =
<b><i>preserve</i></b> and <a href="#f-w-fixed" class="propref" shape="rect">{fixed}</a> = <b><i>false</i></b>}</div></div><div class="pvpair"><div class="pvProp"><a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a></div><div class="pvVal">[as appropriate]
</div></div><div class="pvpair"><div class="pvProp"><a href="#std-context" class="propref" shape="rect">{context}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-annotations" class="propref" shape="rect">{annotations}</a></div><div class="pvVal">The empty sequence</div></div></div></div><div class="block">
<a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>Implementation-defined<span class="arrow">&#183;</span></a> <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitives<span class="arrow">&#183;</span></a> <span class="rfc2119">must</span> have a <a href="#std" class="compref" shape="rect">Simple Type Definition</a> with
the values shown above, with the following exceptions.
<ol class="enumar"><li><div class="p">The <a href="#std-facets" class="propref" shape="rect">{facets}</a> property
<span class="rfc2119">must</span> contain a <a href="#f-w" class="compref" shape="rect">whiteSpace</a> facet, the value of which is
<a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a>. It <span class="rfc2119">may</span> contain other facets,
whether defined in this specification or <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a>.</div></li><li><div class="p">The value of <a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a>
is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a>.</div></li><li><div class="p">The value of <a href="#std-annotations" class="propref" shape="rect">{annotations}</a>
<span class="rfc2119">may</span> be empty, but need not be.</div></li></ol>
</div><div class="note"><div class="p"><b>Note:</b> It is a consequence of the rule just given that each
<a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> will have an <a href="http://www.w3.org/TR/2004/REC-xml-names11-20040204/#dt-expname" shape="rect">expanded name</a>
by which it can be referred to.</div></div><div class="note"><div class="p"><b>Note:</b>
<a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>Implementation-defined<span class="arrow">&#183;</span></a> datatypes will normally have a value
other than '<code>http://www.w3.org/2001/XMLSchema</code>' for the
<a href="#std-target_namespace" class="propref" shape="rect">{target namespace}</a>
property. That namespace is controlled by the W3C and
datatypes will be added to it only by W3C or its designees.
</div></div><p>Similarly, <a href="#std" class="compref" shape="rect">Simple Type Definition</a>s for all the built-in <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
datatypes are present by definition in every schema, with properties
as specified in <a href="#ordinary-built-ins" shape="rect">Other Built-in Datatypes (&#167;3.4)</a> and as represented
in XML in <a href="#drvd.nxsd" shape="rect">Illustrative XML representations for the built-in ordinary type definitions (&#167;C.2)</a>.</p><div class="scInstance"><div class="scHead"><a id="dummy-ddef" name="dummy-ddef" shape="rect">Simple Type Definition corresponding to the built-in ordinary datatypes</a></div><div class="pvlist"><div class="pvpair"><div class="pvProp"><b>Property</b></div><div class="pvVal"><b>Value</b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-name" class="propref" shape="rect">{name}</a></div><div class="pvVal">[as appropriate]</div></div><div class="pvpair"><div class="pvProp"><a href="#std-target_namespace" class="propref" shape="rect">{target namespace}</a></div><div class="pvVal">'<code>http://www.w3.org/2001/XMLSchema</code>'</div></div><div class="pvpair"><div class="pvProp"><a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a></div><div class="pvVal">[as specified in the appropriate
sub-section of <a href="#ordinary-built-ins" shape="rect">Other Built-in Datatypes (&#167;3.4)</a>]</div></div><div class="pvpair"><div class="pvProp"><a href="#std-final" class="propref" shape="rect">{final}</a></div><div class="pvVal">The empty set</div></div><div class="pvpair"><div class="pvProp"><a href="#std-variety" class="propref" shape="rect">{variety}</a></div><div class="pvVal">[<b><i>atomic</i></b> or <b><i>list</i></b>, as specified in the appropriate
sub-section of <a href="#ordinary-built-ins" shape="rect">Other Built-in Datatypes (&#167;3.4)</a>]</div></div><div class="pvpair"><div class="pvProp"><a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a></div><div class="pvVal">[if <a href="#std-variety" class="propref" shape="rect">{variety}</a> is
<b><i>atomic</i></b>, then the <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> of the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>, otherwise <b><i>absent</i></b>]</div></div><div class="pvpair"><div class="pvProp"><a href="#std-facets" class="propref" shape="rect">{facets}</a></div><div class="pvVal">[as specified in the appropriate
sub-section of <a href="#ordinary-built-ins" shape="rect">Other Built-in Datatypes (&#167;3.4)</a>]</div></div><div class="pvpair"><div class="pvProp"><a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a></div><div class="pvVal">[as specified in the appropriate
sub-section of <a href="#ordinary-built-ins" shape="rect">Other Built-in Datatypes (&#167;3.4)</a>]</div></div><div class="pvpair"><div class="pvProp"><a href="#std-context" class="propref" shape="rect">{context}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a></div><div class="pvVal">if <a href="#std-variety" class="propref" shape="rect">{variety}</a> is
<b><i>atomic</i></b>, then <b><i>absent</i></b>, otherwise as specified in the appropriate
sub-section of <a href="#ordinary-built-ins" shape="rect">Other Built-in Datatypes (&#167;3.4)</a>]</div></div><div class="pvpair"><div class="pvProp"><a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a></div><div class="pvVal"><b><i>absent</i></b></div></div><div class="pvpair"><div class="pvProp"><a href="#std-annotations" class="propref" shape="rect">{annotations}</a></div><div class="pvVal">As shown in the XML representations
of the ordinary built-in datatypes in <a href="#drvd.nxsd" shape="rect">Illustrative XML representations for the built-in ordinary type definitions (&#167;C.2)</a></div></div></div></div></div></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#rf-defn" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#rf-facets" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="rf-fund-facets" id="rf-fund-facets" shape="rect"></a>4.2 Fundamental Facets</h3><div class="localToc">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.2.1 <a href="#rf-ordered" shape="rect">ordered</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.2.1.1 <a href="#dc-ordered" shape="rect">The ordered Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.2.2 <a href="#rf-bounded" shape="rect">bounded</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.2.2.1 <a href="#dc-bounded" shape="rect">The bounded Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.2.3 <a href="#rf-cardinality" shape="rect">cardinality</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.2.3.1 <a href="#dc-cardinality" shape="rect">The cardinality Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.2.4 <a href="#rf-numeric" shape="rect">numeric</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.2.4.1 <a href="#dc-numeric" shape="rect">The numeric Schema Component</a><br clear="none" />
</div><p>
<a name="ff" id="ff" shape="rect"></a>
<span class="termdef"><a name="dt-fundamental-facet" id="dt-fundamental-facet" title="" shape="rect">[Definition:]&#160;&#160;</a>
Each <b>fundamental facet</b> is a
schema component that provides a limited piece of information about
some aspect of each datatype.</span>&#160; All <a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental
facet<span class="arrow">&#183;</span></a> components are defined in this section.&#160;
For example, <a href="#ff-c" class="compref" shape="rect">cardinality</a> is a
<a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facet<span class="arrow">&#183;</span></a>.&#160;
Most <a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>
are given a value
fixed with each primitive datatype's definition, and this value is not changed by
subsequent <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derivations<span class="arrow">&#183;</span></a> (even when
it would perhaps be reasonable to expect an application to give a more accurate value based
on the constraining facets used to define the <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derivation<span class="arrow">&#183;</span></a>).&#160; The
<a href="#ff-c" class="compref" shape="rect">cardinality</a> and <a href="#ff-b" class="compref" shape="rect">bounded</a> facets
are exceptions to this rule; their values may change as a result of certain
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derivations<span class="arrow">&#183;</span></a>.</p><div class="note"><div class="p"><b>Note:</b> Schema components are identified by kind.&#160; "Fundamental"
is not a kind of component.&#160; Each kind of <a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facet<span class="arrow">&#183;</span></a>
("ordered",
"bounded", etc.) is
a separate kind of schema component.</div></div><p></p><p>A <a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facet<span class="arrow">&#183;</span></a> can occur only
in the <a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a> of a <a href="#std" class="compref" shape="rect">Simple Type Definition</a>, and this is the
only place where <a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facet<span class="arrow">&#183;</span></a> components
occur.&#160; &#160; Each kind of <a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facet<span class="arrow">&#183;</span></a>
component occurs (once) in each <a href="#std" class="compref" shape="rect">Simple Type Definition</a>'s <a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a> set.</p><div class="note"><div class="p"><b>Note:</b> The value of any <a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facet<span class="arrow">&#183;</span></a> component can always
be calculated from other properties of its <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner<span class="arrow">&#183;</span></a>.&#160;
Fundamental facets are not required for schema processing,
but some applications use them.</div></div><div class="div3">
<h4><a name="rf-ordered" id="rf-ordered" shape="rect"></a>4.2.1 ordered</h4><p>For some datatypes,
this document specifies an order relation for their value spaces (see
<a href="#order" shape="rect">Order (&#167;2.2.3)</a>); the <em>ordered</em> facet reflects
this. It takes the values <b><i>total</i></b>, <b><i>partial</i></b>,
and <b><i>false</i></b>, with the meanings described below.
For the <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes,
the value of the <em>ordered</em> facet is
specified in <a href="#app-fundamental-facets" shape="rect">Fundamental Facets (&#167;F.1)</a>.
For <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatypes, the value is inherited without change
from the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
For a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>, the value is always <b><i>false</i></b>;
for a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, the value is computed as described below.
</p><p>A <b><i>false</i></b> value means no order is prescribed;
a <b><i>total</i></b> value
assures that the prescribed order is a total
order; a <b><i>partial</i></b> value means
that the prescribed order is a partial
order, but not (for the primitive type in question) a total order.
</p><div class="note"><div class="p"><b>Note:</b> The value <b><i>false</i></b> in the <em>ordered</em> facet does not
mean no partial or total ordering <em>exists</em> for the value
space, only that none is specified by this document for use in
checking upper and lower bounds. Mathematically, any set of values
possesses at least one
trivial partial ordering, in which every value
pair that is not equal is incomparable.</div></div><div class="note"><div class="p"><b>Note:</b> When new datatypes are derived from datatypes with partial orders,
the constraints imposed can sometimes result in a value space
for which the ordering is total, or trivial. The value of the
<a href="#ff-o" class="compref" shape="rect">ordered</a> facet is not, however, changed to reflect this.
The value <b><i>partial</i></b> should therefore be interpreted with
appropriate caution.</div></div><p>
<span class="termdef"><a name="dt-ordered" id="dt-ordered" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, and hence a datatype, is said to be
<b>ordered</b> if some
members of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> are
drawn from a <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>
datatype for which
the table in <a href="#app-fundamental-facets" shape="rect">Fundamental Facets (&#167;F.1)</a> specifies
the value <b><i>total</i></b> or <b><i>partial</i></b> for
the <em>ordered</em> facet.</span></p><div class="note"><div class="p"><b>Note:</b> Some of the "real-world" datatypes which are the basis for those defined herein
are ordered in some applications, even though no order is prescribed for schema-processing
purposes.&#160; For example, <a href="#boolean" shape="rect">boolean</a> is sometimes ordered, and <a href="#string" shape="rect">string</a>
and <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatypes <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> from
ordered <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatypes are sometimes given "lexical"
orderings.&#160; They are <em>not</em> ordered for schema-processing purposes.</div></div><div class="div4">
<h5><a name="dc-ordered" id="dc-ordered" shape="rect"></a>4.2.1.1 The ordered Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="ff-o" id="ff-o" shape="rect">ordered</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="ff-o-value" shape="rect" id="ff-o-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
One of {<span class="enumval">false</span>, <span class="enumval">partial</span>, <span class="enumval">total</span>}. Required.</div>
</div>
</div></div>
</div>
</div>
<div class="block"><a href="#ff-o-value" class="propref" shape="rect">{value}</a> depends on
the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a>
<a href="#std-variety" class="propref" shape="rect">{variety}</a>, <a href="#std-facets" class="propref" shape="rect">{facets}</a>,
and <a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a>.
The appropriate <b>case</b> among the following <span class="rfc2119">must</span> be true:<div class="constraintlist"><div class="clnumber">1<a id="x04042a" name="x04042a" shape="rect"> </a><b>If </b>the
<a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a>
<a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>atomic</i></b>, <b>then </b>
the appropriate <b>case</b> among the following <span class="rfc2119">must</span> be true:<div class="constraintlist"><div class="clnumber">1.1<a id="x040428b" name="x040428b" shape="rect"> </a><b>If </b>the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner<span class="arrow">&#183;</span></a> is <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>, <b>then </b><a href="#ff-o-value" class="propref" shape="rect">{value}</a> is as specified in the
table in <a href="#app-fundamental-facets" shape="rect">Fundamental Facets (&#167;F.1)</a>.</div><div class="clnumber">1.2 <b>otherwise </b><a href="#ff-o-value" class="propref" shape="rect">{value}</a> is the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a>
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>'s <a href="#ff-o" class="compref" shape="rect">ordered</a> <a href="#ff-o-value" class="propref" shape="rect">{value}</a>.</div></div>
</div><div class="clnumber">2 <b>If </b>the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a>
<a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>list</i></b>, <b>then </b><a href="#ff-o-value" class="propref" shape="rect">{value}</a> is <b><i>false</i></b>.</div><div class="clnumber">3 <b>otherwise </b>the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>union</i></b>;
the appropriate <b>case</b> among the following <span class="rfc2119">must</span> be true:<div class="constraintlist"><div class="clnumber">3.1<a id="x040428" name="x040428" shape="rect"> </a><b>If </b>every
<a href="#dt-basicmember" class="termref" shape="rect"><span class="arrow">&#183;</span>basic member<span class="arrow">&#183;</span></a> of the
<a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner<span class="arrow">&#183;</span></a>
has
<a href="#std-variety" class="propref" shape="rect">{variety}</a> atomic and has the same
<a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a>, <b>then </b><a href="#ff-o-value" class="propref" shape="rect">{value}</a> is the same as the
<a href="#ff-o" class="compref" shape="rect">ordered</a> component's <a href="#ff-o-value" class="propref" shape="rect">{value}</a> in that
primitive
type definition's
<a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a>.</div><div class="clnumber">3.2 <b>If </b>each member of the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a>
<a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a> has an <a href="#ff-o" class="compref" shape="rect">ordered</a>
component in its
<a href="#std-fundamental_facets" class="propref" shape="rect">{fundamental facets}</a> whose <a href="#ff-o-value" class="propref" shape="rect">{value}</a> is <b><i>false</i></b>, <b>then </b><a href="#ff-o-value" class="propref" shape="rect">{value}</a> is
<b><i>false</i></b>.</div><div class="clnumber">3.3 <b>otherwise </b><a href="#ff-o-value" class="propref" shape="rect">{value}</a> is
<b><i>partial</i></b>.</div></div>
</div></div>
</div></div></div><div class="div3">
<h4><a name="rf-bounded" id="rf-bounded" shape="rect"></a>4.2.2 bounded</h4><p>Some ordered datatypes have the property that
there is one value greater than or equal to every other value, and
another that is
less than or equal to every other value.&#160; (In the case of
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
datatypes, these two values
are
not necessarily in the value space of the derived datatype,
but they must be in the value
space of the primitive datatype from which they have been derived.)
The <em>bounded</em> facet value is <a href="#boolean" shape="rect">boolean</a> and is
generally <b><i>true</i></b> for such <em>bounded</em> datatypes.&#160;
However, it will remain <b><i>false</i></b> when the mechanism for imposing
such a bound is difficult to detect, as, for example, when the
boundedness occurs because of derivation using a <a href="#f-p" class="compref" shape="rect">pattern</a>
component.</p><div class="div4">
<h5><a name="dc-bounded" id="dc-bounded" shape="rect"></a>4.2.2.1 The bounded Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="ff-b" id="ff-b" shape="rect">bounded</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="ff-b-value" shape="rect" id="ff-b-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p><a href="#ff-b-value" class="propref" shape="rect">{value}</a> depends on
the
<a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a>
<a href="#std-variety" class="propref" shape="rect">{variety}</a>,
<a href="#std-facets" class="propref" shape="rect">{facets}</a> and
<a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a>.</p><p>When the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner<span class="arrow">&#183;</span></a>
is <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>,
<a href="#ff-b-value" class="propref" shape="rect">{value}</a> is as specified in the
table in <a href="#app-fundamental-facets" shape="rect">Fundamental Facets (&#167;F.1)</a>.&#160; Otherwise, when the
<a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a>
<a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>atomic</i></b>,
if one of <a href="#f-mii" class="compref" shape="rect">minInclusive</a> or <a href="#f-mie" class="compref" shape="rect">minExclusive</a>
and one of <a href="#f-mai" class="compref" shape="rect">maxInclusive</a> or <a href="#f-mae" class="compref" shape="rect">maxExclusive</a>
are members of
the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-facets" class="propref" shape="rect">{facets}</a> set, then
<a href="#ff-b-value" class="propref" shape="rect">{value}</a> is <b><i>true</i></b>;
otherwise
<a href="#ff-b-value" class="propref" shape="rect">{value}</a> is <b><i>false</i></b>.</p><p>When the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a>
<a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>list</i></b>,
<a href="#ff-b-value" class="propref" shape="rect">{value}</a> is <b><i>false</i></b>.</p><p>
When the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>union</i></b>, if
<a href="#ff-b-value" class="propref" shape="rect">{value}</a> is <b><i>true</i></b> for every
member of the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a> set and all of the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#dt-basicmember" class="termref" shape="rect"><span class="arrow">&#183;</span>basic members<span class="arrow">&#183;</span></a> have the same
<a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a>, then <a href="#ff-b-value" class="propref" shape="rect">{value}</a> is <b><i>true</i></b>; otherwise
<a href="#ff-b-value" class="propref" shape="rect">{value}</a> is <b><i>false</i></b>.
</p></div></div><div class="div3">
<h4><a name="rf-cardinality" id="rf-cardinality" shape="rect"></a>4.2.3 cardinality</h4><p>Every value space has a specific number of members.&#160; This number can be characterized as
<em>finite</em> or <em>infinite</em>.&#160; (Currently there are no datatypes with infinite
value spaces larger than <em>countable</em>.)&#160; The <em>cardinality</em> facet value is
either <b><i>finite</i></b> or <b><i>countably infinite</i></b> and is generally <b><i>finite</i></b> for datatypes with
finite value spaces.&#160; However, it will remain <b><i>countably infinite</i></b> when the mechanism for
causing finiteness is difficult to detect, as, for example, when finiteness occurs because of a
derivation using a <a href="#f-p" class="compref" shape="rect">pattern</a> component.</p><div class="div4">
<h5><a name="dc-cardinality" id="dc-cardinality" shape="rect"></a>4.2.3.1 The cardinality Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="ff-c" id="ff-c" shape="rect">cardinality</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="ff-c-value" shape="rect" id="ff-c-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
One of {<span class="enumval">finite</span>, <span class="enumval">countably infinite</span>}. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
<a href="#ff-c-value" class="propref" shape="rect">{value}</a> depends on the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-variety" class="propref" shape="rect">{variety}</a>,
<a href="#std-facets" class="propref" shape="rect">{facets}</a>, and <a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a>.</p><div class="block">When the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner<span class="arrow">&#183;</span></a> is
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>, <a href="#ff-c-value" class="propref" shape="rect">{value}</a> is as specified in the
table in <a href="#app-fundamental-facets" shape="rect">Fundamental Facets (&#167;F.1)</a>.&#160; Otherwise, when
the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>atomic</i></b>,
<a href="#ff-c-value" class="propref" shape="rect">{value}</a>
is <b><i>countably infinite</i></b> unless <b>any</b> of the following
conditions are true, in which case <a href="#ff-c-value" class="propref" shape="rect">{value}</a> is
<b><i>finite</i></b>:
<ol class="enumar"><li><div class="p">the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>'s
<a href="#ff-c" class="compref" shape="rect">cardinality</a> <a href="#ff-c-value" class="propref" shape="rect">{value}</a> is <b><i>finite</i></b>,</div></li><li><div class="p">at least one of <a href="#f-l" class="compref" shape="rect">length</a>, <a href="#f-mal" class="compref" shape="rect">maxLength</a>,
or <a href="#f-td" class="compref" shape="rect">totalDigits</a> is a member of the
<a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-facets" class="propref" shape="rect">{facets}</a> set,</div></li><li><div class="p"><b>all</b> of the following are true:</div><ol class="enumla"><li><div class="p">one of <a href="#f-mii" class="compref" shape="rect">minInclusive</a> or <a href="#f-mie" class="compref" shape="rect">minExclusive</a>
is a member of the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-facets" class="propref" shape="rect">{facets}</a> set</div></li><li><div class="p">one of <a href="#f-mai" class="compref" shape="rect">maxInclusive</a> or <a href="#f-mae" class="compref" shape="rect">maxExclusive</a>
is a member of the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-facets" class="propref" shape="rect">{facets}</a> set</div></li><li><div class="p"><b>either</b> of the following are true:</div><ol class="enumlr"><li><div class="p"><a href="#f-fd" class="compref" shape="rect">fractionDigits</a> is a member of the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-facets" class="propref" shape="rect">{facets}</a> set</div></li><li><div class="p"><a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> is one of <a href="#date" shape="rect">date</a>,
<a href="#gYearMonth" shape="rect">gYearMonth</a>, <a href="#gYear" shape="rect">gYear</a>, <a href="#gMonthDay" shape="rect">gMonthDay</a>,
<a href="#gDay" shape="rect">gDay</a> or <a href="#gMonth" shape="rect">gMonth</a></div></li></ol></li></ol></li></ol>
</div><p>
When the
<a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a>
<a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>list</i></b>,
if <a href="#f-l" class="compref" shape="rect">length</a> or both <a href="#f-mil" class="compref" shape="rect">minLength</a> and <a href="#f-mal" class="compref" shape="rect">maxLength</a>
are members of the
<a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-facets" class="propref" shape="rect">{facets}</a> set
and the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a>'s
<a href="#ff-c" class="compref" shape="rect">cardinality</a> <a href="#ff-c-value" class="propref" shape="rect">{value}</a> is <b><i>finite</i></b>
then <a href="#ff-c-value" class="propref" shape="rect">{value}</a> is <b><i>finite</i></b>;
otherwise
<a href="#ff-c-value" class="propref" shape="rect">{value}</a> is <b><i>countably infinite</i></b>.
</p><p>
When the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>union</i></b>,
if <a href="#ff-c" class="compref" shape="rect">cardinality</a>'s <a href="#ff-c-value" class="propref" shape="rect">{value}</a> is <em>finite</em>
for every member of the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a> set then
<a href="#ff-c-value" class="propref" shape="rect">{value}</a> is <b><i>finite</i></b>,
otherwise <a href="#ff-c-value" class="propref" shape="rect">{value}</a>
is <b><i>countably infinite</i></b>.
</p></div></div><div class="div3">
<h4><a name="rf-numeric" id="rf-numeric" shape="rect"></a>4.2.4 numeric</h4><p>Some value spaces are made up of things that
are
conceptually
<em>numeric</em>, others are
not.&#160;The <em>numeric</em> facet value indicates which are
considered numeric.
</p><div class="div4">
<h5><a name="dc-numeric" id="dc-numeric" shape="rect"></a>4.2.4.1 The numeric Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="ff-n" id="ff-n" shape="rect">numeric</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="ff-n-value" shape="rect" id="ff-n-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
<a href="#ff-n-value" class="propref" shape="rect">{value}</a> depends on the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-variety" class="propref" shape="rect">{variety}</a>,
<a href="#std-facets" class="propref" shape="rect">{facets}</a>, <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> and
<a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a>.
</p><p>
When the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner<span class="arrow">&#183;</span></a> is <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>, <a href="#ff-n-value" class="propref" shape="rect">{value}</a> is as specified in the
table in <a href="#app-fundamental-facets" shape="rect">Fundamental Facets (&#167;F.1)</a>.&#160; Otherwise, when the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>atomic</i></b>,
<a href="#ff-n-value" class="propref" shape="rect">{value}</a> is inherited from
the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>'s <a href="#ff-n" class="compref" shape="rect">numeric</a><a href="#ff-n-value" class="propref" shape="rect">{value}</a>.
</p><p>
When the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>list</i></b>,
<a href="#ff-n-value" class="propref" shape="rect">{value}</a> is <b><i>false</i></b>.
</p><p>
When the
<a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a>
<a href="#std-variety" class="propref" shape="rect">{variety}</a> is <b><i>union</i></b>,
if <a href="#ff-n" class="compref" shape="rect">numeric</a>'s <a href="#ff-n-value" class="propref" shape="rect">{value}</a> is <b><i>true</i></b>
for every member of the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner's<span class="arrow">&#183;</span></a> <a href="#std-member_type_definitions" class="propref" shape="rect">{member type definitions}</a> set then
<a href="#ff-n-value" class="propref" shape="rect">{value}</a> is <b><i>true</i></b>,
otherwise <a href="#ff-n-value" class="propref" shape="rect">{value}</a> is <b><i>false</i></b>.
</p></div></div></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#rf-fund-facets" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="rf-facets" id="rf-facets" shape="rect"></a>4.3 Constraining Facets</h3><div class="localToc">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.1 <a href="#rf-length" shape="rect">length</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.1.1 <a href="#dc-length" shape="rect">The length Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.1.2 <a href="#xr-length" shape="rect">XML Representation of length Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.1.3 <a href="#length-validation-rules" shape="rect">length Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.1.4 <a href="#length-coss" shape="rect">Constraints on length Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.2 <a href="#rf-minLength" shape="rect">minLength</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.2.1 <a href="#dc-minLength" shape="rect">The minLength Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.2.2 <a href="#xr-minLength" shape="rect">XML Representation of minLength Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.2.3 <a href="#minLength-validation-rules" shape="rect">minLength Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.2.4 <a href="#minLength-coss" shape="rect">Constraints on minLength Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.3 <a href="#rf-maxLength" shape="rect">maxLength</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.3.1 <a href="#dc-maxLength" shape="rect">The maxLength Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.3.2 <a href="#xr-maxLength" shape="rect">XML Representation of maxLength Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.3.3 <a href="#maxLength-validation-rules" shape="rect">maxLength Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.3.4 <a href="#maxLength-coss" shape="rect">Constraints on maxLength Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.4 <a href="#rf-pattern" shape="rect">pattern</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.4.1 <a href="#dc-pattern" shape="rect">The pattern Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.4.2 <a href="#xr-pattern" shape="rect">XML Representation of pattern Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.4.3 <a href="#pattern-rep-constr" shape="rect">Constraints on XML Representation of pattern</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.4.4 <a href="#pattern-validation-rules" shape="rect">pattern Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.4.5 <a href="#pattern-constraints" shape="rect">Constraints on pattern Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.5 <a href="#rf-enumeration" shape="rect">enumeration</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.5.1 <a href="#dc-enumeration" shape="rect">The enumeration Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.5.2 <a href="#xr-enumeration" shape="rect">XML Representation of enumeration Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.5.3 <a href="#enumeration-rep-constr" shape="rect">Constraints on XML Representation of enumeration</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.5.4 <a href="#enumeration-validation-rules" shape="rect">enumeration Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.5.5 <a href="#enumeration-coss" shape="rect">Constraints on enumeration Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.6 <a href="#rf-whiteSpace" shape="rect">whiteSpace</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.6.1 <a href="#dc-whiteSpace" shape="rect">The whiteSpace Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.6.2 <a href="#xr-whiteSpace" shape="rect">XML Representation of whiteSpace Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.6.3 <a href="#whiteSpace-validation-rules" shape="rect">whiteSpace Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.6.4 <a href="#whiteSpace-coss" shape="rect">Constraints on whiteSpace Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.7 <a href="#rf-maxInclusive" shape="rect">maxInclusive</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.7.1 <a href="#dc-maxInclusive" shape="rect">The maxInclusive Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.7.2 <a href="#xr-maxInclusive" shape="rect">XML Representation of maxInclusive Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.7.3 <a href="#maxInclusive-validation-rules" shape="rect">maxInclusive Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.7.4 <a href="#maxInclusive-coss" shape="rect">Constraints on maxInclusive Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.8 <a href="#rf-maxExclusive" shape="rect">maxExclusive</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.8.1 <a href="#dc-maxExclusive" shape="rect">The maxExclusive Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.8.2 <a href="#xr-maxExclusive" shape="rect">XML Representation of maxExclusive Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.8.3 <a href="#maxExclusive-validation-rules" shape="rect">maxExclusive Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.8.4 <a href="#maxExclusive-coss" shape="rect">Constraints on maxExclusive Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.9 <a href="#rf-minExclusive" shape="rect">minExclusive</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.9.1 <a href="#dc-minExclusive" shape="rect">The minExclusive Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.9.2 <a href="#xr-minExclusive" shape="rect">XML Representation of minExclusive Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.9.3 <a href="#minExclusive-validation-rules" shape="rect">minExclusive Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.9.4 <a href="#minExclusive-coss" shape="rect">Constraints on minExclusive Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.10 <a href="#rf-minInclusive" shape="rect">minInclusive</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.10.1 <a href="#dc-minInclusive" shape="rect">The minInclusive Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.10.2 <a href="#xr-minInclusive" shape="rect">XML Representation of minInclusive Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.10.3 <a href="#minInclusive-validation-rules" shape="rect">minInclusive Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.10.4 <a href="#minInclusive-coss" shape="rect">Constraints on minInclusive Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.11 <a href="#rf-totalDigits" shape="rect">totalDigits</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.11.1 <a href="#dc-totalDigits" shape="rect">The totalDigits Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.11.2 <a href="#xr-totalDigits" shape="rect">XML Representation of totalDigits Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.11.3 <a href="#totalDigits-validation-rules" shape="rect">totalDigits Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.11.4 <a href="#totalDigits-coss" shape="rect">Constraints on totalDigits Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.12 <a href="#rf-fractionDigits" shape="rect">fractionDigits</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.12.1 <a href="#dc-fractionDigits" shape="rect">The fractionDigits Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.12.2 <a href="#xr-fractionDigits" shape="rect">XML Representation of fractionDigits Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.12.3 <a href="#fractionDigits-validation-rules" shape="rect">fractionDigits Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.12.4 <a href="#fractionDigits-coss" shape="rect">Constraints on fractionDigits Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.13 <a href="#rf-assertions" shape="rect">Assertions</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.13.1 <a href="#dc-assertions" shape="rect">The assertions Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.13.2 <a href="#xr-assertions" shape="rect">XML Representation of assertions Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.13.3 <a href="#assertions-validation-rules" shape="rect">Assertions Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.13.4 <a href="#assertions-coss" shape="rect">Constraints on assertions Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.14 <a href="#rf-explicitTimezone" shape="rect">explicitTimezone</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.14.1 <a href="#dc-explicitTimezone" shape="rect">The explicitTimezone Schema Component</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.14.2 <a href="#xr-timezone" shape="rect">XML Representation of explicitTimezone Schema Components</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.14.3 <a href="#timezone-vr" shape="rect">explicitTimezone Validation Rules</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;4.3.14.4 <a href="#timezone-coss" shape="rect">Constraints on explicitTimezone Schema Components</a><br clear="none" />
</div><p>
<a name="f" id="f" shape="rect"></a>
<span class="termdef"><a name="dt-constraining-facet" id="dt-constraining-facet" title="" shape="rect">[Definition:]&#160;&#160;</a><b>Constraining facets</b>
are schema components whose values may be set or changed
during <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derivation<span class="arrow">&#183;</span></a> (subject to facet-specific controls)
to control various aspects of the derived datatype.</span>&#160;
All <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facet<span class="arrow">&#183;</span></a> components
defined by this specification
are
defined in this section.&#160; For example,
<a href="#f-w" class="compref" shape="rect">whiteSpace</a> is a <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facet<span class="arrow">&#183;</span></a>.&#160;
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>Constraining Facets<span class="arrow">&#183;</span></a> are given a value as part of
the <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derivation<span class="arrow">&#183;</span></a>
when an <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>
datatype is defined by <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restricting<span class="arrow">&#183;</span></a>
a <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> or <a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatype; a few
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> have default values
that are also provided for <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes.</p><div class="note"><div class="p"><b>Note:</b> Schema components are identified by kind.&#160; "Constraining"
is not a kind of component.&#160; Each kind of <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facet<span class="arrow">&#183;</span></a>
("whiteSpace",
"length", etc.) is a separate kind of schema component. </div></div><div class="block">
This specification distinguishes three kinds of constraining facets:<ul><li><div class="p"><span class="termdef"><a name="dt-pre-lexical" id="dt-pre-lexical" title="" shape="rect">[Definition:]&#160;&#160;</a>A constraining facet which
is used to normalize an initial <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> before checking
to see whether the resulting character sequence is a member of a datatype's
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> is a <b>pre-lexical</b> facet.</span></div><div class="p">This specification defines just one <a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> facet:
<a href="#f-w" class="compref" shape="rect">whiteSpace</a>.</div></li><li><div class="p"><span class="termdef"><a name="dt-lexical" id="dt-lexical" title="" shape="rect">[Definition:]&#160;&#160;</a>A constraining facet which
directly restricts the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of a datatype
is a <b>lexical</b> facet.</span></div><div class="p">This specification defines just one
<a href="#dt-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical<span class="arrow">&#183;</span></a> facet:
<a href="#f-p" class="compref" shape="rect">pattern</a>.</div><div class="note"><div class="p"><b>Note:</b> As specified normatively elsewhere, <a href="#dt-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical<span class="arrow">&#183;</span></a> facets can have an indirect
effect on the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>: if every lexical representation of a value
is removed from the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>, the value itself is removed
from the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.</div></div></li><li><div class="p"><span class="termdef"><a name="dt-value-based" id="dt-value-based" title="" shape="rect">[Definition:]&#160;&#160;</a>A constraining facet which
directly restricts the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of a datatype
is a <b>value-based</b> facet.</span></div><div class="p">Most of the constraining facets defined by this specification
are <a href="#dt-value-based" class="termref" shape="rect"><span class="arrow">&#183;</span>value-based<span class="arrow">&#183;</span></a> facets.</div><div class="note"><div class="p"><b>Note:</b> As specified normatively elsewhere, <a href="#dt-value-based" class="termref" shape="rect"><span class="arrow">&#183;</span>value-based<span class="arrow">&#183;</span></a> facets can have an indirect
effect on the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>: if a value
is removed from the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, its lexical representations
are removed
from the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>.</div></div></li></ul>
</div><p>
Conforming processors <span class="rfc2119">must</span>
support all the facets defined in this section.
It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether a processor supports other
constraining facets. <span class="termdef"><a name="dt-unknown-f" id="dt-unknown-f" title="" shape="rect">[Definition:]&#160;&#160;</a>An
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facet<span class="arrow">&#183;</span></a> which is not supported by
the processor in use is <b>unknown</b>.</span>
</p><div class="note"><div class="p"><b>Note:</b> A reference to an <a href="#dt-unknown-f" class="termref" shape="rect"><span class="arrow">&#183;</span>unknown<span class="arrow">&#183;</span></a> facet might be a reference to
an <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> facet supported by some other processor,
or might be the result of a typographic error, or might
have some other explanation.
</div></div><p></p><p>The descriptions of individual facets given
below include both constraints on <a href="#std" class="compref" shape="rect">Simple Type Definition</a> components
and rules for checking the datatype validity of a given literal against
a given datatype. The validation rules typically depend upon having
a full knowledge of the datatype; full knowledge of the datatype,
in turn, depends on having a fully instantiated <a href="#std" class="compref" shape="rect">Simple Type Definition</a>.
A full instantiation of the <a href="#std" class="compref" shape="rect">Simple Type Definition</a>, and the checking
of the component constraints, require knowledge of the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
It follows that if a datatype's <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> is <a href="#dt-unknown-dt" class="termref" shape="rect"><span class="arrow">&#183;</span>unknown<span class="arrow">&#183;</span></a>, the
<a href="#std" class="compref" shape="rect">Simple Type Definition</a> defining the datatype will be incompletely
instantiated, and the datatype itself will be <a href="#dt-unknown-dt" class="termref" shape="rect"><span class="arrow">&#183;</span>unknown<span class="arrow">&#183;</span></a>.
Similarly, any datatype defined using an <a href="#dt-unknown-f" class="termref" shape="rect"><span class="arrow">&#183;</span>unknown<span class="arrow">&#183;</span></a> <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facet<span class="arrow">&#183;</span></a>
will be <a href="#dt-unknown-dt" class="termref" shape="rect"><span class="arrow">&#183;</span>unknown<span class="arrow">&#183;</span></a>. It is not possible to perform datatype validation
as defined here using <a href="#dt-unknown-dt" class="termref" shape="rect"><span class="arrow">&#183;</span>unknown<span class="arrow">&#183;</span></a> datatypes.</p><div class="note"><div class="p"><b>Note:</b> The preceding paragraph does not forbid implementations from attempting
to make use of such partial information as they have about <a href="#dt-unknown-dt" class="termref" shape="rect"><span class="arrow">&#183;</span>unknown<span class="arrow">&#183;</span></a>
datatypes. But the exploitation of such partial knowledge is not
datatype validity checking as defined here and is to be distinguished
from it in the implementation's documentation and interface.</div></div><div class="div3">
<h4><a name="rf-length" id="rf-length" shape="rect"></a>4.3.1 length</h4><p>
<span class="termdef"><a name="dt-length" id="dt-length" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>length</b> is the number
of <em>units of length</em>, where <em>units of length</em>
varies depending on the type that is being <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from.
The value of
<b>length</b>&#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be a
<a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a>.
</span>
</p><p>
For <a href="#string" shape="rect">string</a> and datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#string" shape="rect">string</a>,
<b>length</b> is measured in units of <a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">
character</a>s as defined in <a href="#XML" shape="rect">[XML]</a>.
For <a href="#anyURI" shape="rect">anyURI</a>, <b>length</b> is measured in units of
characters (as for <a href="#string" shape="rect">string</a>).
For <a href="#hexBinary" shape="rect">hexBinary</a> and <a href="#base64Binary" shape="rect">base64Binary</a> and datatypes
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from them,
<b>length</b> is measured in octets (8 bits) of binary data.
For datatypes <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> by <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>,
<b>length</b> is measured in number of list items.
</p><div class="note"><div class="p"><b>Note:</b>
For <a href="#string" shape="rect">string</a> and datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#string" shape="rect">string</a>,
<b>length</b> will not always coincide with "string length" as perceived
by some users or with the number of storage units in some digital representation.&#160;
Therefore, care should be taken when specifying a value for <b>length</b>
and in attempting to infer storage requirements from a given value for
<b>length</b>.
</div></div><p>
<a href="#dt-length" class="termref" shape="rect"><span class="arrow">&#183;</span>length<span class="arrow">&#183;</span></a> provides for:
</p><ul><li><div class="p">
Constraining a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
to values with a specific number of <em>units of length</em>,
where <em>units of length</em>
varies depending on <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</div></li></ul><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following is the definition of a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatype to represent product codes which must be
exactly 8 characters in length.&#160; By fixing the value of the
<b>length</b> facet we ensure that types derived from productCode can
change or set the values of other facets, such as <b>pattern</b>, but
cannot change the length.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='productCode'&gt;
&lt;restriction base='string'&gt;
&lt;length value='8' fixed='true'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div></div><div class="div4">
<h5><a name="dc-length" id="dc-length" shape="rect"></a>4.3.1.1 The length Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-l" id="f-l" shape="rect">length</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-l-annotations" shape="rect" id="f-l-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-l-value" shape="rect" id="f-l-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
An xs:nonNegativeInteger value. Required.</div>
</div>
<div class="propDefn"><a name="f-l-fixed" shape="rect" id="f-l-fixed"></a><div class="pdName"><span class="propdef">{fixed}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
If <a href="#f-l-fixed" class="propref" shape="rect">{fixed}</a> is <em>true</em>, then types for which
the current type is the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> cannot specify a
value for <a href="#f-l" class="compref" shape="rect">length</a> other than <a href="#f-l-value" class="propref" shape="rect">{value}</a>.
</p><div class="note"><div class="p"><b>Note:</b> The <a href="#f-l-fixed" class="propref" shape="rect">{fixed}</a> property is defined for
parallelism with other facets and for compatiblity with version 1.0
of this specification. But it is a consequence of
<a href="#length-valid-restriction" shape="rect">length valid restriction (&#167;4.3.1.4)</a> that the value of
the <a href="#f-l" class="compref" shape="rect">length</a> facet cannot be changed, regardless of
whether <a href="#f-l-fixed" class="propref" shape="rect">{fixed}</a> is
<em>true</em> or <em>false</em>.
</div></div></div><div class="div4">
<h5><a name="xr-length" id="xr-length" shape="rect"></a>4.3.1.2 XML Representation of length Schema Components</h5><p>
The XML representation for a <a href="#f-l" class="compref" shape="rect">length</a> schema
component is a <a href="#element-length" class="eltref" shape="rect">&lt;length&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>length</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-length" name="element-length" shape="rect">&lt;length</a><br clear="none" />&#160;&#160;fixed = <a href="#boolean" shape="rect">boolean</a>&#160;:&#160;false<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/length&gt;</p><div class="reprcompmulti"><div class="reprHead"><a href="#dc-fractionDigits" shape="rect">length</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-l-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-l-fixed" class="propref" shape="rect">{fixed}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>fixed</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if present, otherwise <b><i>false</i></b>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-l-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-one" shape="rect">annotation mapping</a> of the
<a href="#element-length" class="eltref" shape="rect">&lt;length&gt;</a>
element, as defined in
section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div></div><div class="div4">
<h5><a name="length-validation-rules" id="length-validation-rules" shape="rect"></a>4.3.1.3 length Validation Rules</h5><div class="constraintnote"><a id="cvc-length-valid" name="cvc-length-valid" shape="rect"></a><b>Validation Rule: Length Valid</b><br clear="none" /><div class="constraint"><div class="p">
A value in a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> is facet-valid with
respect to <a href="#dt-length" class="termref" shape="rect"><span class="arrow">&#183;</span>length<span class="arrow">&#183;</span></a>
if and only if:
</div><div class="constraintlist"><div class="clnumber">1 <!--* no span class='p' possible here *-->
if the <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> then
<div class="constraintlist"><div class="clnumber">1.1 <span class="p">
if <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> is <a href="#string" shape="rect">string</a> or <a href="#anyURI" shape="rect">anyURI</a>, then the length of the value,
as measured in <a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">
character</a>s
<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be equal to <a href="#f-l-value" class="propref" shape="rect">{value}</a>;
</span></div>
<div class="clnumber">1.2 <span class="p">
if <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> is <a href="#hexBinary" shape="rect">hexBinary</a> or <a href="#base64Binary" shape="rect">base64Binary</a>, then the length of
the value, as measured in octets of the binary data,
<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be
equal to <a href="#f-l-value" class="propref" shape="rect">{value}</a>;
</span></div>
<div class="clnumber">1.3 <span class="p">
if <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> is <a href="#QName" shape="rect">QName</a> or <a href="#NOTATION" shape="rect">NOTATION</a>, then any <a href="#f-l-value" class="propref" shape="rect">{value}</a> is facet-valid.
</span></div>
</div>
</div>
<div class="clnumber">2 <span class="p">
if the <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>,
then the length of the value, as measured in list items,
<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be
equal to <a href="#f-l-value" class="propref" shape="rect">{value}</a>
</span></div>
</div></div></div><p>
The use of <a href="#dt-length" class="termref" shape="rect"><span class="arrow">&#183;</span>length<span class="arrow">&#183;</span></a>
on <a href="#QName" shape="rect">QName</a>, <a href="#NOTATION" shape="rect">NOTATION</a>, and datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from them
is deprecated.&#160; Future versions of this
specification may remove this facet for these datatypes.
</p></div><div class="div4">
<h5><a name="length-coss" id="length-coss" shape="rect"></a>4.3.1.4 Constraints on length Schema Components</h5><div class="constraintnote"><a id="length-minLength-maxLength" name="length-minLength-maxLength" shape="rect"></a><b>Schema Component Constraint: length and minLength or maxLength</b><br clear="none" /><div class="constraint"><div class="p">If <a href="#f-l" class="compref" shape="rect">length</a> is a member of <a href="#std-facets" class="propref" shape="rect">{facets}</a> then
<div class="constraintlist"><div class="clnumber">1 <!--* no span class='p' possible here *-->It is an error for <a href="#f-mil" class="compref" shape="rect">minLength</a> to be a member of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> unless
<div class="constraintlist"><div class="clnumber">1.1 <span class="p">the <a href="#f-mil-value" class="propref" shape="rect">{value}</a> of <a href="#f-mil" class="compref" shape="rect">minLength</a> &lt;= the <a href="#f-l-value" class="propref" shape="rect">{value}</a> of <a href="#f-l" class="compref" shape="rect">length</a> and</span></div>
<div class="clnumber">1.2 <span class="p">there is some
type definition from which this one is derived by
one or more <a href="#dt-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restriction<span class="arrow">&#183;</span></a> steps in which <a href="#f-mil" class="compref" shape="rect">minLength</a> has the same
<a href="#f-mil-value" class="propref" shape="rect">{value}</a> and <a href="#f-l" class="compref" shape="rect">length</a> is not specified.</span></div>
</div>
</div>
<div class="clnumber">2 <!--* no span class='p' possible here *-->It is an error for <a href="#f-mal" class="compref" shape="rect">maxLength</a> to be a member of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> unless
<div class="constraintlist"><div class="clnumber">2.1 <span class="p">the <a href="#f-l-value" class="propref" shape="rect">{value}</a> of <a href="#f-l" class="compref" shape="rect">length</a> &lt;= the <a href="#f-mal-value" class="propref" shape="rect">{value}</a> of <a href="#f-mal" class="compref" shape="rect">maxLength</a> and</span></div>
<div class="clnumber">2.2 <span class="p">there is some
type definition from which this one is derived by
one or more restriction steps in which <a href="#f-mal" class="compref" shape="rect">maxLength</a> has the same
<a href="#f-mal-value" class="propref" shape="rect">{value}</a> and <a href="#f-l" class="compref" shape="rect">length</a> is not specified.</span></div>
</div>
</div>
</div>
</div></div></div><div class="constraintnote"><a id="length-valid-restriction" name="length-valid-restriction" shape="rect"></a><b>Schema Component Constraint: length valid restriction</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if <a href="#f-l" class="compref" shape="rect">length</a>
is among the members of <a href="#std-facets" class="propref" shape="rect">{facets}</a> of
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> and <a href="#f-l-value" class="propref" shape="rect">{value}</a> is
not equal to the <a href="#f-l-value" class="propref" shape="rect">{value}</a> of the parent
<a href="#f-l" class="compref" shape="rect">length</a>.
</div></div></div></div></div><div class="div3">
<h4><a name="rf-minLength" id="rf-minLength" shape="rect"></a>4.3.2 minLength</h4><p>
<span class="termdef"><a name="dt-minLength" id="dt-minLength" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>minLength</b> is
the minimum number of <em>units of length</em>, where
<em>units of length</em> varies depending on the type that is being
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from.
The value of <b>minLength</b>
&#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be a <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a>.
</span>
</p><p>
For <a href="#string" shape="rect">string</a> and datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#string" shape="rect">string</a>,
<b>minLength</b> is measured in units of <a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">
character</a>s as defined in <a href="#XML" shape="rect">[XML]</a>.
For <a href="#hexBinary" shape="rect">hexBinary</a> and <a href="#base64Binary" shape="rect">base64Binary</a> and datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from them,
<b>minLength</b> is measured in octets (8 bits) of binary data.
For datatypes <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> by <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>,
<b>minLength</b> is measured in number of list items.
</p><div class="note"><div class="p"><b>Note:</b>
For <a href="#string" shape="rect">string</a> and datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#string" shape="rect">string</a>,
<b>minLength</b> will not always coincide with "string length" as perceived
by some users or with the number of storage units in some digital representation.
Therefore, care should be taken when specifying a value for <b>minLength</b>
and in attempting to infer storage requirements from a given value for
<b>minLength</b>.
</div></div><p>
<a href="#dt-minLength" class="termref" shape="rect"><span class="arrow">&#183;</span>minLength<span class="arrow">&#183;</span></a> provides for:
</p><ul><li><div class="p">
Constraining a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
to values with at least a specific number of <em>units of length</em>,
where <em>units of length</em>
varies depending on <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</div></li></ul><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following is the definition of a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatype which requires strings to have at least one character (i.e.,
the empty string is not in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
of this datatype).
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='non-empty-string'&gt;
&lt;restriction base='string'&gt;
&lt;minLength value='1'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div></div><div class="div4">
<h5><a name="dc-minLength" id="dc-minLength" shape="rect"></a>4.3.2.1 The minLength Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-mil" id="f-mil" shape="rect">minLength</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-mil-annotations" shape="rect" id="f-mil-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-mil-value" shape="rect" id="f-mil-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
An xs:nonNegativeInteger value. Required.</div>
</div>
<div class="propDefn"><a name="f-mil-fixed" shape="rect" id="f-mil-fixed"></a><div class="pdName"><span class="propdef">{fixed}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
If <a href="#f-mil-fixed" class="propref" shape="rect">{fixed}</a> is <em>true</em>, then types for which
the current type is the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> cannot specify a
value for <a href="#f-mil" class="compref" shape="rect">minLength</a> other than <a href="#f-mil-value" class="propref" shape="rect">{value}</a>.
</p></div><div class="div4">
<h5><a name="xr-minLength" id="xr-minLength" shape="rect"></a>4.3.2.2 XML Representation of minLength Schema Component</h5><p>
The XML representation for a <a href="#f-mil" class="compref" shape="rect">minLength</a> schema
component is a <a href="#element-minLength" class="eltref" shape="rect">&lt;minLength&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>minLength</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-minLength" name="element-minLength" shape="rect">&lt;minLength</a><br clear="none" />&#160;&#160;fixed = <a href="#boolean" shape="rect">boolean</a>&#160;:&#160;false<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/minLength&gt;</p><div class="reprcompmulti"><div class="reprHead"><a href="#dc-fractionDigits" shape="rect">minLength</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mil-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mil-fixed" class="propref" shape="rect">{fixed}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>fixed</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if present, otherwise <b><i>false</i></b>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mil-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-one" shape="rect">annotation mapping</a> of the
<a href="#element-minLength" class="eltref" shape="rect">&lt;minLength&gt;</a>
element, as defined in
section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div></div><div class="div4">
<h5><a name="minLength-validation-rules" id="minLength-validation-rules" shape="rect"></a>4.3.2.3 minLength Validation Rules</h5><div class="constraintnote"><a id="cvc-minLength-valid" name="cvc-minLength-valid" shape="rect"></a><b>Validation Rule: minLength Valid</b><br clear="none" /><div class="constraint"><div class="p">
A value in a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> is facet-valid with
respect to <a href="#dt-minLength" class="termref" shape="rect"><span class="arrow">&#183;</span>minLength<span class="arrow">&#183;</span></a>, determined as follows:
</div><div class="constraintlist"><div class="clnumber">1 <!--* no span class='p' possible here *-->
if the <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> then
<div class="constraintlist"><div class="clnumber">1.1 <span class="p">
if <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> is <a href="#string" shape="rect">string</a> or
<a href="#anyURI" shape="rect">anyURI</a>, then the
length of the value, as measured in<a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">
character</a>s
<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be greater than or equal to
<a href="#f-mil-value" class="propref" shape="rect">{value}</a>;
</span></div>
<div class="clnumber">1.2 <span class="p">
if <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> is <a href="#hexBinary" shape="rect">hexBinary</a> or <a href="#base64Binary" shape="rect">base64Binary</a>, then the
length of the value, as measured in octets of the binary data,
<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be greater than or equal to
<a href="#f-mil-value" class="propref" shape="rect">{value}</a>;
</span></div>
<div class="clnumber">1.3 <span class="p">
if <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> is <a href="#QName" shape="rect">QName</a> or <a href="#NOTATION" shape="rect">NOTATION</a>, then
any <a href="#f-mil-value" class="propref" shape="rect">{value}</a> is facet-valid.
</span></div>
</div>
</div>
<div class="clnumber">2 <span class="p">
if the <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>,
then the length of the value, as measured
in list items, <a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be greater than or equal
to <a href="#f-mil-value" class="propref" shape="rect">{value}</a>
</span></div>
</div></div></div><p>
The use of <a href="#dt-minLength" class="termref" shape="rect"><span class="arrow">&#183;</span>minLength<span class="arrow">&#183;</span></a>
on <a href="#QName" shape="rect">QName</a>, <a href="#NOTATION" shape="rect">NOTATION</a>, and datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from them
is deprecated.&#160; Future versions of this
specification may remove this facet for these datatypes.
</p></div><div class="div4">
<h5><a name="minLength-coss" id="minLength-coss" shape="rect"></a>4.3.2.4 Constraints on minLength Schema Components</h5><div class="constraintnote"><a id="minLength-less-than-equal-to-maxLength" name="minLength-less-than-equal-to-maxLength" shape="rect"></a><b>Schema Component Constraint: minLength &lt;= maxLength</b><br clear="none" /><div class="constraint"><div class="p">
If both <a href="#f-mil" class="compref" shape="rect">minLength</a> and <a href="#f-mal" class="compref" shape="rect">maxLength</a>
are members of <a href="#std-facets" class="propref" shape="rect">{facets}</a>, then the
<a href="#f-mil-value" class="propref" shape="rect">{value}</a> of <a href="#f-mil" class="compref" shape="rect">minLength</a>
&#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be less than or equal to the
<a href="#f-mal-value" class="propref" shape="rect">{value}</a> of <a href="#f-mal" class="compref" shape="rect">maxLength</a>.
</div></div></div><div class="constraintnote"><a id="minLength-valid-restriction" name="minLength-valid-restriction" shape="rect"></a><b>Schema Component Constraint: minLength valid restriction</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if <a href="#f-mil" class="compref" shape="rect">minLength</a>
is among the members of <a href="#std-facets" class="propref" shape="rect">{facets}</a> of
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> and <a href="#f-mil-value" class="propref" shape="rect">{value}</a> is
less than the <a href="#f-mil-value" class="propref" shape="rect">{value}</a> of the parent
<a href="#f-mil" class="compref" shape="rect">minLength</a>.
</div></div></div></div></div><div class="div3">
<h4><a name="rf-maxLength" id="rf-maxLength" shape="rect"></a>4.3.3 maxLength</h4><p>
<span class="termdef"><a name="dt-maxLength" id="dt-maxLength" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>maxLength</b> is
the maximum number of <em>units of length</em>, where
<em>units of length</em> varies
depending on the type that is being <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from.
The value of <b>maxLength</b>
&#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be a <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a>.
</span>
</p><p>
For <a href="#string" shape="rect">string</a> and datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#string" shape="rect">string</a>,
<b>maxLength</b> is measured in units of <a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">
character</a>s as defined in <a href="#XML" shape="rect">[XML]</a>.
For <a href="#hexBinary" shape="rect">hexBinary</a> and <a href="#base64Binary" shape="rect">base64Binary</a> and datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from them,
<b>maxLength</b> is measured in octets (8 bits) of binary data.
For datatypes <a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> by <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>,
<b>maxLength</b> is measured in number of list items.
</p><div class="note"><div class="p"><b>Note:</b>
For <a href="#string" shape="rect">string</a> and datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#string" shape="rect">string</a>,
<b>maxLength</b> will not always coincide with "string length" as perceived
by some users or with the number of storage units in some digital representation.
Therefore, care should be taken when specifying a value for <b>maxLength</b>
and in attempting to infer storage requirements from a given value for
<b>maxLength</b>.
</div></div><p>
<a href="#dt-maxLength" class="termref" shape="rect"><span class="arrow">&#183;</span>maxLength<span class="arrow">&#183;</span></a> provides for:
</p><ul><li><div class="p">
Constraining a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
to values with at most a specific number of <em>units of length</em>,
where <em>units of length</em>
varies depending on <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</div></li></ul><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following is the definition of a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatype which might be used to accept form input with an upper limit
to the number of characters that are acceptable.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='form-input'&gt;
&lt;restriction base='string'&gt;
&lt;maxLength value='50'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div></div><div class="div4">
<h5><a name="dc-maxLength" id="dc-maxLength" shape="rect"></a>4.3.3.1 The maxLength Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-mal" id="f-mal" shape="rect">maxLength</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-mal-annotations" shape="rect" id="f-mal-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-mal-value" shape="rect" id="f-mal-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
An xs:nonNegativeInteger value. Required.</div>
</div>
<div class="propDefn"><a name="f-mal-fixed" shape="rect" id="f-mal-fixed"></a><div class="pdName"><span class="propdef">{fixed}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
If <a href="#f-mal-fixed" class="propref" shape="rect">{fixed}</a> is <em>true</em>, then types for which
the current type is the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> cannot specify a
value for <a href="#f-mal" class="compref" shape="rect">maxLength</a> other than <a href="#f-mal-value" class="propref" shape="rect">{value}</a>.
</p></div><div class="div4">
<h5><a name="xr-maxLength" id="xr-maxLength" shape="rect"></a>4.3.3.2 XML Representation of maxLength Schema Components</h5><p>
The XML representation for a <a href="#f-mal" class="compref" shape="rect">maxLength</a> schema
component is a <a href="#element-maxLength" class="eltref" shape="rect">&lt;maxLength&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>maxLength</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-maxLength" name="element-maxLength" shape="rect">&lt;maxLength</a><br clear="none" />&#160;&#160;fixed = <a href="#boolean" shape="rect">boolean</a>&#160;:&#160;false<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/maxLength&gt;</p><div class="reprcompmulti"><div class="reprHead"><a href="#dc-fractionDigits" shape="rect">maxLength</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mal-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mal-fixed" class="propref" shape="rect">{fixed}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>fixed</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if present, otherwise <b><i>false</i></b>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mal-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-one" shape="rect">annotation mapping</a> of the
<a href="#element-maxLength" class="eltref" shape="rect">&lt;maxLength&gt;</a>
element, as defined in
section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div></div><div class="div4">
<h5><a name="maxLength-validation-rules" id="maxLength-validation-rules" shape="rect"></a>4.3.3.3 maxLength Validation Rules</h5><div class="constraintnote"><a id="cvc-maxLength-valid" name="cvc-maxLength-valid" shape="rect"></a><b>Validation Rule: maxLength Valid</b><br clear="none" /><div class="constraint"><div class="p">
A value in a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> is facet-valid with
respect to <a href="#dt-maxLength" class="termref" shape="rect"><span class="arrow">&#183;</span>maxLength<span class="arrow">&#183;</span></a>, determined as follows:
</div><div class="constraintlist"><div class="clnumber">1 <!--* no span class='p' possible here *-->
if the <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> then
<div class="constraintlist"><div class="clnumber">1.1 <span class="p">
if <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> is <a href="#string" shape="rect">string</a> or
<a href="#anyURI" shape="rect">anyURI</a>, then the
length of the value, as measured in <a href="http://www.w3.org/TR/xml11/#dt-character" shape="rect">
character</a>s
<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be less than or equal to
<a href="#f-mal-value" class="propref" shape="rect">{value}</a>;
</span></div>
<div class="clnumber">1.2 <span class="p">
if <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> is <a href="#hexBinary" shape="rect">hexBinary</a> or <a href="#base64Binary" shape="rect">base64Binary</a>, then the
length of the value, as measured in octets of the binary data,
<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be less than or equal to <a href="#f-mal-value" class="propref" shape="rect">{value}</a>;
</span></div>
<div class="clnumber">1.3 <span class="p">
if <a href="#std-primitive_type_definition" class="propref" shape="rect">{primitive type definition}</a> is <a href="#QName" shape="rect">QName</a> or <a href="#NOTATION" shape="rect">NOTATION</a>, then
any <a href="#f-mal-value" class="propref" shape="rect">{value}</a> is facet-valid.
</span></div>
</div>
</div>
<div class="clnumber">2 <span class="p">
if the <a href="#std-variety" class="propref" shape="rect">{variety}</a> is <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>,
then the length of the value, as measured
in list items, <a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be less than or equal to
<a href="#f-mal-value" class="propref" shape="rect">{value}</a>
</span></div>
</div></div></div><p>
The use of <a href="#dt-maxLength" class="termref" shape="rect"><span class="arrow">&#183;</span>maxLength<span class="arrow">&#183;</span></a>
on <a href="#QName" shape="rect">QName</a>, <a href="#NOTATION" shape="rect">NOTATION</a>, and datatypes <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from them
is deprecated.&#160; Future versions of this
specification may remove this facet for these datatypes.
</p></div><div class="div4">
<h5><a name="maxLength-coss" id="maxLength-coss" shape="rect"></a>4.3.3.4 Constraints on maxLength Schema Components</h5><div class="constraintnote"><a id="maxLength-valid-restriction" name="maxLength-valid-restriction" shape="rect"></a><b>Schema Component Constraint: maxLength valid restriction</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if <a href="#f-mal" class="compref" shape="rect">maxLength</a>
is among the members of <a href="#std-facets" class="propref" shape="rect">{facets}</a> of
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> and <a href="#f-mal-value" class="propref" shape="rect">{value}</a> is
greater than the <a href="#f-mal-value" class="propref" shape="rect">{value}</a> of the parent
<a href="#f-mal" class="compref" shape="rect">maxLength</a>.
</div></div></div></div></div><div class="div3">
<h4><a name="rf-pattern" id="rf-pattern" shape="rect"></a>4.3.4 pattern</h4><p><span class="termdef"><a name="dt-pattern" id="dt-pattern" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>pattern</b> is a constraint on the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of a datatype which is achieved by
constraining the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> to <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>
which match
each
member of a set of
<a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular
expressions<span class="arrow">&#183;</span></a>.&#160;
The value of <b>pattern</b>
&#160;<span class="rfc2119">must</span>
be a set of
<a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expressions<span class="arrow">&#183;</span></a>.
</span>
</p><div class="note"><div class="p"><b>Note:</b> An XML <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a>
containing more than one <a href="#element-pattern" class="eltref" shape="rect">&lt;pattern&gt;</a> element gives
rise to a single <a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expression<span class="arrow">&#183;</span></a> in the set; this
<a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expression<span class="arrow">&#183;</span></a> is an "or" of
the <a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expressions<span class="arrow">&#183;</span></a> that
are the content of the <a href="#element-pattern" class="eltref" shape="rect">&lt;pattern&gt;</a> elements.</div></div><p>
<a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a> provides for:
</p><ul><li><div class="p">Constraining a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
to values that are denoted by <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> which match
each of a set of
<a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expressions<span class="arrow">&#183;</span></a>.
</div></li></ul><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following is the definition of a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatype which is a better representation of postal codes in the
United States, by limiting strings to those which are matched by
a specific <a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expression<span class="arrow">&#183;</span></a>.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='better-us-zipcode'&gt;
&lt;restriction base='string'&gt;
&lt;pattern value='[0-9]{5}(-[0-9]{4})?'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div></div><div class="div4">
<h5><a name="dc-pattern" id="dc-pattern" shape="rect"></a>4.3.4.1 The pattern Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-p" id="f-p" shape="rect">pattern</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-p-annotations" shape="rect" id="f-p-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-p-value" shape="rect" id="f-p-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
<div class="ownDesc">
<p>A non-empty set of <a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expressions<span class="arrow">&#183;</span></a>.</p></div>
</div>
</div>
</div></div>
</div>
</div>
</div><div class="div4">
<h5><a name="xr-pattern" id="xr-pattern" shape="rect"></a>4.3.4.2 XML Representation of pattern Schema Components</h5><p>
The XML representation for a <a href="#f-p" class="compref" shape="rect">pattern</a> schema
component is
one or more <a href="#element-pattern" class="eltref" shape="rect">&lt;pattern&gt;</a>
element information items. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>pattern</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-pattern" name="element-pattern" shape="rect">&lt;pattern</a><br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#string" shape="rect">string</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/pattern&gt;</p><div class="reprdep">
</div><div class="reprcompmulti"><div class="reprHead"><a href="#dc-pattern" shape="rect">pattern</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-p-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
<span class="termdef"><a name="l-R" id="l-R" title="" shape="rect">[Definition:]&#160;&#160;</a>Let <b>R</b> be a regular
expression given by
</span>
the appropriate <b>case</b> among the following:<div class="constraintlist"><div class="clnumber">1 <b>If </b>there is only one <a href="#element-pattern" class="eltref" shape="rect">&lt;pattern&gt;</a> among the
<a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a> of a <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a>, <b>then </b>the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of its <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a></div><div class="clnumber">2 <b>otherwise </b>the concatenation of the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual values</a> of
all the <a href="#element-pattern" class="eltref" shape="rect">&lt;pattern&gt;</a>
<a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a>'s <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attributes]</a>, in order,
separated by '<code>|</code>', so forming a single regular expression with multiple
<a href="#dt-branch" class="termref" shape="rect"><span class="arrow">&#183;</span>branches<span class="arrow">&#183;</span></a>.</div></div>
The value is then given by
the appropriate <b>case</b> among the following:<div class="constraintlist"><div class="clnumber">1 <b>If </b>the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> of the
<a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner<span class="arrow">&#183;</span></a> has a <a href="#f-p" class="compref" shape="rect">pattern</a> facet among its <a href="#std-facets" class="propref" shape="rect">{facets}</a>, <b>then </b>the union of that <a href="#f-p" class="compref" shape="rect">pattern</a> facet's <a href="#f-p-value" class="propref" shape="rect">{value}</a> and {<a href="#l-R" class="termref" shape="rect"><span class="arrow">&#183;</span>R<span class="arrow">&#183;</span></a>}</div><div class="clnumber">2 <b>otherwise </b>just {<a href="#l-R" class="termref" shape="rect"><span class="arrow">&#183;</span>R<span class="arrow">&#183;</span></a>}</div></div>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-p-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-set" shape="rect">annotation mapping</a> of the set containing all of the
<a href="#element-pattern" class="eltref" shape="rect">&lt;pattern&gt;</a> elements among the <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a> of the
<a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a> element information item,
as defined in section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div><div class="note"><div class="p"><b>Note:</b> The <a href="#f-p-value" class="propref" shape="rect">{value}</a> property
will only have more than one member when <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a> involves
a <a href="#f-p" class="compref" shape="rect">pattern</a> facet at more than one step in a
type derivation. During validation, lexical forms will be
checked against every member of the resulting <a href="#f-p-value" class="propref" shape="rect">{value}</a>, effectively
creating a conjunction of patterns.</div><div class="p">
In summary, <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a>
facets specified on the <em>same</em> step in a type
derivation are <b>OR</b>ed together, while <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a>
facets specified on <em>different</em> steps of a type derivation
are <b>AND</b>ed together.
</div><div class="p">
Thus, to impose two <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a> constraints simultaneously,
schema authors may either write a single <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a> which
expresses the intersection of the two <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a>s they wish to
impose, or define each <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a> on a separate type derivation
step.
</div></div></div><div class="div4">
<h5><a name="pattern-rep-constr" id="pattern-rep-constr" shape="rect"></a>4.3.4.3 Constraints on XML Representation of pattern</h5><div class="constraintnote"><a id="src-pattern-value" name="src-pattern-value" shape="rect"></a><b>Schema Representation Constraint: Pattern value</b><br clear="none" /><div class="constraint"><div class="p">The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> must be a
<a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expression<span class="arrow">&#183;</span></a> as
defined in <a href="#regexs" shape="rect">Regular Expressions (&#167;G)</a>.</div></div></div></div><div class="div4">
<h5><a name="pattern-validation-rules" id="pattern-validation-rules" shape="rect"></a>4.3.4.4 pattern Validation Rules</h5><div class="constraintnote"><a id="cvc-pattern-valid" name="cvc-pattern-valid" shape="rect"></a><b>Validation Rule: pattern valid</b><br clear="none" /><div class="constraint"><div class="p">A <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> in a <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> is pattern-valid (or: facet-valid with
respect to <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a>)
if and only if
for each
<a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expression<span class="arrow">&#183;</span></a> in its <a href="#f-p-value" class="propref" shape="rect">{value}</a>,
the <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> is among the set of character sequences denoted by
the <a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expression<span class="arrow">&#183;</span></a>.
</div></div></div><div class="note"><div class="p"><b>Note:</b>
As noted in <a href="#datatype" shape="rect">Datatype (&#167;2.1)</a>,
certain uses of the <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a> facet may
eliminate from the lexical space the canonical forms of some values
in the value space; this can be inconvenient for applications
which write out the canonical form of a value and rely on
being able to read it in again as a legal lexical form.
This specification provides no recourse in such situations;
applications are free to deal with it as they see fit.
Caution is advised.
</div></div></div><div class="div4">
<h5><a name="pattern-constraints" id="pattern-constraints" shape="rect"></a>4.3.4.5 Constraints on pattern Schema Components</h5><div class="constraintnote"><a id="cos-pattern-restriction" name="cos-pattern-restriction" shape="rect"></a><b>Schema Component Constraint: Valid restriction of pattern</b><br clear="none" /><div class="constraint"><div class="p">It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if there is any member of
the <a href="#f-p-value" class="propref" shape="rect">{value}</a> of the
<a href="#f-p" class="compref" shape="rect">pattern</a> facet on the
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
which is not also a member of the
<a href="#f-p-value" class="propref" shape="rect">{value}</a>.</div><div class="note"><div class="p"><b>Note:</b> For components constructed from XML representations in schema documents,
the satisfaction of this constraint is a consequence of the XML mapping rules:
any pattern imposed by a simple type definition <var>S</var> will always
also be imposed by any type derived from <var>S</var> by <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a>.
This constraint ensures that components constructed by other means
(so-called "born-binary" components) similarly preserve
<a href="#f-p" class="compref" shape="rect">pattern</a> facets across <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a>.
</div></div></div></div></div></div><div class="div3">
<h4><a name="rf-enumeration" id="rf-enumeration" shape="rect"></a>4.3.5 enumeration</h4><p>
<span class="termdef"><a name="dt-enumeration" id="dt-enumeration" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>enumeration</b> constrains the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
to a specified set of values.
</span>
</p><p>
<b>enumeration</b> does not impose an order relation on the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> it creates; the value of the
<a href="#dt-ordered" class="termref" shape="rect"><span class="arrow">&#183;</span>ordered<span class="arrow">&#183;</span></a> property of the <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
datatype remains that of the datatype from which it is
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>.
</p><p>
<a href="#dt-enumeration" class="termref" shape="rect"><span class="arrow">&#183;</span>enumeration<span class="arrow">&#183;</span></a> provides for:
</p><ul><li><div class="p">
Constraining a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
to a specified set of values.
</div></li></ul><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following example is a <a href="#std" class="compref" shape="rect">Simple Type Definition</a>
for a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a> datatype which limits the values
of dates to the three US holidays enumerated. This
<a href="#std" class="compref" shape="rect">Simple Type Definition</a>
would appear in a schema authored by an "end-user" and
shows how to define a datatype by enumerating the values in its
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.&#160; The enumerated values must be
type-valid <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> for the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='holidays'&gt;
&lt;annotation&gt;
&lt;documentation&gt;some US holidays&lt;/documentation&gt;
&lt;/annotation&gt;
&lt;restriction base='gMonthDay'&gt;
&lt;enumeration value='--01-01'&gt;
&lt;annotation&gt;
&lt;documentation&gt;New Year's day&lt;/documentation&gt;
&lt;/annotation&gt;
&lt;/enumeration&gt;
&lt;enumeration value='--07-04'&gt;
&lt;annotation&gt;
&lt;documentation&gt;4th of July&lt;/documentation&gt;
&lt;/annotation&gt;
&lt;/enumeration&gt;
&lt;enumeration value='--12-25'&gt;
&lt;annotation&gt;
&lt;documentation&gt;Christmas&lt;/documentation&gt;
&lt;/annotation&gt;
&lt;/enumeration&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div></div><div class="div4">
<h5><a name="dc-enumeration" id="dc-enumeration" shape="rect"></a>4.3.5.1 The enumeration Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-e" id="f-e" shape="rect">enumeration</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-e-annotations" shape="rect" id="f-e-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-e-value" shape="rect" id="f-e-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
<div class="ownDesc">
<p>
A set of values from the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</p></div>
</div>
</div>
</div></div>
</div>
</div>
</div><div class="div4">
<h5><a name="xr-enumeration" id="xr-enumeration" shape="rect"></a>4.3.5.2 XML Representation of enumeration Schema Components</h5><p>
The XML representation for an <a href="#f-e" class="compref" shape="rect">enumeration</a> schema
component is
one or more <a href="#element-enumeration" class="eltref" shape="rect">&lt;enumeration&gt;</a>
element information items. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>enumeration</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-enumeration" name="element-enumeration" shape="rect">&lt;enumeration</a><br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#dt-anySimpleType" shape="rect">anySimpleType</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/enumeration&gt;</p><div class="reprdep">
</div><div class="reprcompmulti"><div class="reprHead"><a href="#dc-enumeration" shape="rect">enumeration</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-e-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The appropriate <b>case</b> among the following:<div class="constraintlist"><div class="clnumber">1 <b>If </b>there is only one <a href="#element-enumeration" class="eltref" shape="rect">&lt;enumeration&gt;</a>
among the <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a> of a <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a>, <b>then </b>a set with one member, the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of its <code>value</code>
<a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>,
interpreted as an instance of
the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</div><div class="clnumber">2 <b>otherwise </b>a set of the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual values</a> of all the <a href="#element-enumeration" class="eltref" shape="rect">&lt;enumeration&gt;</a> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a>'s <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attributes]</a>, interpreted as instances of
the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</div></div>
<div class="note"><div class="p"><b>Note:</b> The <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> is declared as having
type <a href="#dt-anySimpleType" class="termref" shape="rect"><span class="arrow">&#183;</span><code>anySimpleType</code><span class="arrow">&#183;</span></a>, but the
<a href="#f-e-value" class="propref" shape="rect">{value}</a> property of the
<a href="#f-e" class="compref" shape="rect">enumeration</a> facet <span class="rfc2119">must</span> be a member of the
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
So in mapping from the XML representation
to the <a href="#f-e" class="compref" shape="rect">enumeration</a> component, the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> is
identified by using the <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> of the
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</div></div>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-e-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
A (possibly empty) sequence of
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components, one for each <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">&lt;annotation&gt;</a> among the <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a> of the <a href="#element-enumeration" class="eltref" shape="rect">&lt;enumeration&gt;</a>s among the <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a> of a <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a>, in order.</div></div></div></div><div class="div4">
<h5><a name="enumeration-rep-constr" id="enumeration-rep-constr" shape="rect"></a>4.3.5.3 Constraints on XML Representation of enumeration</h5><div class="constraintnote"><a id="src-enumeration-value" name="src-enumeration-value" shape="rect"></a><b>Schema Representation Constraint: Enumeration value</b><br clear="none" /><div class="constraint"><div class="p">The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-nv" shape="rect">normalized value</a>
of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a> must be
<a href="#cvc-datatype-valid" shape="rect">Datatype Valid (&#167;4.1.4)</a> with respect to the
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> of the <a href="#std" class="compref" shape="rect">Simple Type Definition</a>
corresponding to the
nearest
<a href="#element-simpleType" class="eltref" shape="rect">&lt;simpleType&gt;</a> ancestor
element.</div></div></div></div><div class="div4">
<h5><a name="enumeration-validation-rules" id="enumeration-validation-rules" shape="rect"></a>4.3.5.4 enumeration Validation Rules</h5><div class="constraintnote"><a id="cvc-enumeration-valid" name="cvc-enumeration-valid" shape="rect"></a><b>Validation Rule: enumeration valid</b><br clear="none" /><div class="constraint"><div class="p">
A value in a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> is facet-valid with
respect to <a href="#dt-enumeration" class="termref" shape="rect"><span class="arrow">&#183;</span>enumeration<span class="arrow">&#183;</span></a>
if and only if
the value is
equal or identical
to
one of the values specified in
<a href="#f-e-value" class="propref" shape="rect">{value}</a>.
</div></div></div><div class="note"><div class="p"><b>Note:</b> As specified normatively elsewhere, for purposes of checking
enumerations, no distinction is made between an atomic value <var>V</var>
and a list of length one containing <var>V</var> as its only item.</div><div class="p">In this question, the behavior of this specification is thus
the same as the behavior specified by <a href="#F_O" shape="rect">[XQuery 1.0 and XPath 2.0 Functions and Operators]</a>
and related specifications.</div></div></div><div class="div4">
<h5><a name="enumeration-coss" id="enumeration-coss" shape="rect"></a>4.3.5.5 Constraints on enumeration Schema Components</h5><div class="constraintnote"><a id="enumeration-valid-restriction" name="enumeration-valid-restriction" shape="rect"></a><b>Schema Component Constraint: enumeration valid restriction</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if any member of <a href="#f-e-value" class="propref" shape="rect">{value}</a> is not in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</div></div></div></div></div><div class="div3">
<h4><a name="rf-whiteSpace" id="rf-whiteSpace" shape="rect"></a>4.3.6 whiteSpace</h4><p>
<span class="termdef"><a name="dt-whiteSpace" id="dt-whiteSpace" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>whiteSpace</b> constrains the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
of types <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#string" shape="rect">string</a> such that
the various behaviors
specified in <a href="http://www.w3.org/TR/xml11/#AVNormalize" shape="rect">Attribute Value Normalization</a>
in <a href="#XML" shape="rect">[XML]</a> are realized.&#160; The value of
<b>whiteSpace</b> must be one of {preserve, replace, collapse}.
</span>
</p><div class="glist"><div class="gitem"><div class="giLabel">preserve</div><div class="giDef"><div class="p">
No normalization is done, the value is not changed (this is the
behavior required by <a href="#XML" shape="rect">[XML]</a> for element content)
</div></div></div><div class="gitem"><div class="giLabel">replace</div><div class="giDef"><div class="p">
All occurrences of #x9 (tab), #xA (line feed) and #xD (carriage return)
are replaced with #x20 (space)
</div></div></div><div class="gitem"><div class="giLabel">collapse</div><div class="giDef"><div class="p">
After the processing implied by <b>replace</b>, contiguous
sequences of #x20's are collapsed to a single #x20, and any #x20
at the start or end of the string is then removed.
</div></div></div></div><div class="note"><div class="p"><b>Note:</b>
The notation #xA used here (and elsewhere in this specification)
represents the Universal Character Set (UCS) code point
<code>hexadecimal A</code> (line feed), which is denoted by
U+000A.&#160; This notation is to be distinguished from
<code>&amp;#xA;</code>, which is the XML <a href="http://www.w3.org/TR/xml11/#NT-CharRef" shape="rect">character reference</a> to that same UCS
code point.
</div></div><p>
<b>whiteSpace</b> is applicable to all <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> and
<a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatypes.&#160; For all <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>
datatypes other than <a href="#string" shape="rect">string</a> (and types <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a>
by <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a> from it) the value of <b>whiteSpace</b> is
<code>collapse</code> and cannot be changed by a schema author; for
<a href="#string" shape="rect">string</a> the value of <b>whiteSpace</b> is
<code>preserve</code>; for any type <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> by
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a> from
<a href="#string" shape="rect">string</a> the value of <b>whiteSpace</b> can
be any of the three legal values
(as long as the value is at least as restrictive as
the value of the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>; see
<a href="#whiteSpace-coss" shape="rect">Constraints on whiteSpace Schema Components (&#167;4.3.6.4)</a>).&#160; For all datatypes
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> by <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> the
value of <b>whiteSpace</b> is <code>collapse</code> and cannot
be changed by a schema author.&#160; For all datatypes
<a href="#dt-constructed" class="termref" shape="rect"><span class="arrow">&#183;</span>constructed<span class="arrow">&#183;</span></a> by <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
&#160;<b>whiteSpace</b> does not apply directly; however, the
normalization behavior of <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> types is controlled by
the value of <b>whiteSpace</b> on that one of the
<a href="#dt-basicmember" class="termref" shape="rect"><span class="arrow">&#183;</span>basic members<span class="arrow">&#183;</span></a>
against which the <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
is successfully validated.
</p><div class="note"><div class="p"><b>Note:</b>
For more information on <b>whiteSpace</b>, see the
discussion on white space normalization in
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#components" shape="rect">Schema Component Details</a>
in <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div><p>
<a href="#dt-whiteSpace" class="termref" shape="rect"><span class="arrow">&#183;</span>whiteSpace<span class="arrow">&#183;</span></a> provides for:
</p><ul><li><div class="p">
Constraining a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> according to
the white space normalization rules.
</div></li></ul><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following example is the
<a href="#std" class="compref" shape="rect">Simple Type Definition</a> for
the <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a>
<a href="#token" shape="rect">token</a>
datatype.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='token'&gt;
&lt;restriction base='normalizedString'&gt;
&lt;whiteSpace value='collapse'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div></div><div class="note"><div class="p"><b>Note:</b> The values "<code>replace</code>" and
"<code>collapse</code>" may appear to provide a
convenient way to "unwrap" text (i.e. undo the effects of
pretty-printing and word-wrapping). In some cases, especially
highly constrained data consisting of lists of artificial tokens
such as part numbers or other identifiers, this appearance is
correct. For natural-language data, however, the whitespace
processing prescribed for these values is not only unreliable but
will systematically remove the information needed to perform
unwrapping correctly. For Asian scripts, for example, a correct
unwrapping process will replace line boundaries not with blanks but
with zero-width separators or nothing. In consequence, it is
normally unwise to use these values for natural-language data, or
for any data other than lists of highly constrained tokens.</div></div><div class="div4">
<h5><a name="dc-whiteSpace" id="dc-whiteSpace" shape="rect"></a>4.3.6.1 The whiteSpace Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-w" id="f-w" shape="rect">whiteSpace</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-w-annotations" shape="rect" id="f-w-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-w-value" shape="rect" id="f-w-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
One of {<span class="enumval">preserve</span>, <span class="enumval">replace</span>, <span class="enumval">collapse</span>}. Required.</div>
</div>
<div class="propDefn"><a name="f-w-fixed" shape="rect" id="f-w-fixed"></a><div class="pdName"><span class="propdef">{fixed}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
If <a href="#f-w-fixed" class="propref" shape="rect">{fixed}</a> is <em>true</em>, then types for which
the current type is the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> cannot specify a
value for <a href="#f-w" class="compref" shape="rect">whiteSpace</a> other than <a href="#f-w-value" class="propref" shape="rect">{value}</a>.
</p></div><div class="div4">
<h5><a name="xr-whiteSpace" id="xr-whiteSpace" shape="rect"></a>4.3.6.2 XML Representation of whiteSpace Schema Components</h5><p>
The XML representation for a <a href="#f-w" class="compref" shape="rect">whiteSpace</a> schema
component is a <a href="#element-whiteSpace" class="eltref" shape="rect">&lt;whiteSpace&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>whiteSpace</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-whiteSpace" name="element-whiteSpace" shape="rect">&lt;whiteSpace</a><br clear="none" />&#160;&#160;fixed = <a href="#boolean" shape="rect">boolean</a>&#160;:&#160;false<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = (<var>collapse</var> | <var>preserve</var> | <var>replace</var>)<br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/whiteSpace&gt;</p><div class="reprcompmulti"><div class="reprHead"><a href="#dc-whiteSpace" shape="rect">whiteSpace</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-w-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-w-fixed" class="propref" shape="rect">{fixed}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>fixed</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if present, otherwise <b><i>false</i></b>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-w-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-one" shape="rect">annotation mapping</a> of the
<a href="#element-whiteSpace" class="eltref" shape="rect">&lt;whiteSpace&gt;</a>
element, as defined in
section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div></div><div class="div4">
<h5><a name="whiteSpace-validation-rules" id="whiteSpace-validation-rules" shape="rect"></a>4.3.6.3 whiteSpace Validation Rules</h5><div class="note"><div class="p"><b>Note:</b>
There are no <a href="#dt-cvc" class="termref" shape="rect"><span class="arrow">&#183;</span>Validation Rule<span class="arrow">&#183;</span></a>s associated
with
<a href="#dt-whiteSpace" class="termref" shape="rect"><span class="arrow">&#183;</span>whiteSpace<span class="arrow">&#183;</span></a>.
For more information, see the
discussion on white space normalization in
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#components" shape="rect">Schema Component Details</a>
in <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>, in particular
the section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#sec-wsnormalization" shape="rect">3.1.4
White Space Normalization during Validation</a>.
</div></div></div><div class="div4">
<h5><a name="whiteSpace-coss" id="whiteSpace-coss" shape="rect"></a>4.3.6.4 Constraints on whiteSpace Schema Components</h5><div class="constraintnote"><a id="whiteSpace-valid-restriction" name="whiteSpace-valid-restriction" shape="rect"></a><b>Schema Component Constraint: whiteSpace valid restriction</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if <a href="#f-w" class="compref" shape="rect">whiteSpace</a>
is among the members of <a href="#std-facets" class="propref" shape="rect">{facets}</a> of
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> and any of the following conditions is
true:
</div><div class="constraintlist"><div class="clnumber">1 <span class="p">
<a href="#f-w-value" class="propref" shape="rect">{value}</a> is <em>replace</em> or <em>preserve</em>
and the <a href="#f-w-value" class="propref" shape="rect">{value}</a> of the parent
<a href="#f-w" class="compref" shape="rect">whiteSpace</a> is <em>collapse</em>
</span></div>
<div class="clnumber">2 <span class="p">
<a href="#f-w-value" class="propref" shape="rect">{value}</a> is <em>preserve</em>
and the <a href="#f-w-value" class="propref" shape="rect">{value}</a> of the parent
<a href="#f-w" class="compref" shape="rect">whiteSpace</a> is <em>replace</em>
</span></div>
</div></div></div><div class="note"><div class="p"><b>Note:</b> In order of increasing restrictiveness, the
legal values for the <a href="#f-w" class="compref" shape="rect">whiteSpace</a> facet are
<b><i>preserve</i></b>, <b><i>collapse</i></b>, and
<b><i>replace</i></b>. The more restrictive keywords
are more restrictive not in the sense
of accepting progressively fewer instance documents but
in the sense that each corresponds to a progressively smaller,
more tightly restricted value space.</div></div></div></div><div class="div3">
<h4><a name="rf-maxInclusive" id="rf-maxInclusive" shape="rect"></a>4.3.7 maxInclusive</h4><p>
<span class="termdef"><a name="dt-maxInclusive" id="dt-maxInclusive" title="" shape="rect">[Definition:]&#160;&#160;</a>
maxInclusive is the inclusive upper bound of the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> for a datatype with the <a href="#dt-ordered" class="termref" shape="rect"><span class="arrow">&#183;</span>ordered<span class="arrow">&#183;</span></a> property.&#160; The value of
<b>maxInclusive</b>&#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a>
be equal to some value
in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
</span>
</p><p>
<a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> provides for:
</p><ul><li><div class="p">
Constraining a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> to values with a
specific inclusive upper
bound.
</div></li></ul><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following is the definition of a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatype which limits values to integers less than or equal to
100, using <a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a>.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='one-hundred-or-less'&gt;
&lt;restriction base='integer'&gt;
&lt;maxInclusive value='100'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div></div><div class="div4">
<h5><a name="dc-maxInclusive" id="dc-maxInclusive" shape="rect"></a>4.3.7.1 The maxInclusive Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-mai" id="f-mai" shape="rect">maxInclusive</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-mai-annotations" shape="rect" id="f-mai-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-mai-value" shape="rect" id="f-mai-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
Required.<div class="ownDesc">
<p>A value from the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</p></div>
</div>
</div>
<div class="propDefn"><a name="f-mai-fixed" shape="rect" id="f-mai-fixed"></a><div class="pdName"><span class="propdef">{fixed}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
If <a href="#f-mai-fixed" class="propref" shape="rect">{fixed}</a> is <em>true</em>, then types for which
the current type is the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> cannot specify a
value for <a href="#f-mai" class="compref" shape="rect">maxInclusive</a> other than <a href="#f-mai-value" class="propref" shape="rect">{value}</a>.
</p></div><div class="div4">
<h5><a name="xr-maxInclusive" id="xr-maxInclusive" shape="rect"></a>4.3.7.2 XML Representation of maxInclusive Schema Components</h5><p>
The XML representation for a <a href="#f-mai" class="compref" shape="rect">maxInclusive</a> schema
component is a <a href="#element-maxInclusive" class="eltref" shape="rect">&lt;maxInclusive&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>maxInclusive</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-maxInclusive" name="element-maxInclusive" shape="rect">&lt;maxInclusive</a><br clear="none" />&#160;&#160;fixed = <a href="#boolean" shape="rect">boolean</a>&#160;:&#160;false<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#dt-anySimpleType" shape="rect">anySimpleType</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/maxInclusive&gt;</p><div class="reprdep">
<a href="#f-mai-value" class="propref" shape="rect">{value}</a>&#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a>
be equal to some value
in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</div><div class="reprcompmulti"><div class="reprHead"><a href="#dt-maxInclusive" shape="rect">maxInclusive</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mai-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mai-fixed" class="propref" shape="rect">{fixed}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>fixed</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if present, otherwise <b><i>false</i></b>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mai-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-one" shape="rect">annotation mapping</a> of the
<a href="#element-maxInclusive" class="eltref" shape="rect">&lt;maxInclusive&gt;</a>
element, as defined in
section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div></div><div class="div4">
<h5><a name="maxInclusive-validation-rules" id="maxInclusive-validation-rules" shape="rect"></a>4.3.7.3 maxInclusive Validation Rules</h5><div class="constraintnote"><a id="cvc-maxInclusive-valid" name="cvc-maxInclusive-valid" shape="rect"></a><b>Validation Rule: maxInclusive Valid</b><br clear="none" /><div class="constraint"><div class="p">
A value
in an <a href="#dt-ordered" class="termref" shape="rect"><span class="arrow">&#183;</span>ordered<span class="arrow">&#183;</span></a>&#160;<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
is facet-valid with respect to
<a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a>
if and only if
the value is less than or equal to <a href="#f-mie-value" class="propref" shape="rect">{value}</a>,
according to the
datatype's order relation.
</div></div></div></div><div class="div4">
<h5><a name="maxInclusive-coss" id="maxInclusive-coss" shape="rect"></a>4.3.7.4 Constraints on maxInclusive Schema Components</h5><div class="constraintnote"><a id="minInclusive-less-than-equal-to-maxInclusive" name="minInclusive-less-than-equal-to-maxInclusive" shape="rect"></a><b>Schema Component Constraint: minInclusive &lt;= maxInclusive</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> for the value specified for
<a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a> to be greater than the value
specified for <a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> for the same datatype.
</div></div></div><div class="constraintnote"><a id="maxInclusive-valid-restriction" name="maxInclusive-valid-restriction" shape="rect"></a><b>Schema Component Constraint: maxInclusive valid restriction</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if any of the following conditions
is true:
</div><div class="constraintlist"><div class="clnumber">1 <span class="p">
<a href="#f-mai" class="compref" shape="rect">maxInclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mai-value" class="propref" shape="rect">{value}</a> is
greater than the <a href="#f-mai-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mai" class="compref" shape="rect">maxInclusive</a>.
</span></div>
<div class="clnumber">2 <span class="p">
<a href="#f-mae" class="compref" shape="rect">maxExclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mai-value" class="propref" shape="rect">{value}</a> is
greater than or equal to the <a href="#f-mae-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mae" class="compref" shape="rect">maxExclusive</a>.
</span></div>
<div class="clnumber">3 <span class="p">
<a href="#f-mii" class="compref" shape="rect">minInclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mai-value" class="propref" shape="rect">{value}</a> is
less than the <a href="#f-mii-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mii" class="compref" shape="rect">minInclusive</a>.
</span></div>
<div class="clnumber">4 <span class="p">
<a href="#f-mie" class="compref" shape="rect">minExclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mai-value" class="propref" shape="rect">{value}</a> is
less than or equal to the <a href="#f-mie-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mie" class="compref" shape="rect">minExclusive</a>.
</span></div>
</div></div></div></div></div><div class="div3">
<h4><a name="rf-maxExclusive" id="rf-maxExclusive" shape="rect"></a>4.3.8 maxExclusive</h4><p>
<span class="termdef"><a name="dt-maxExclusive" id="dt-maxExclusive" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>maxExclusive</b> is the exclusive upper bound of the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> for a datatype with the <a href="#dt-ordered" class="termref" shape="rect"><span class="arrow">&#183;</span>ordered<span class="arrow">&#183;</span></a> property.&#160; The value of
<b>maxExclusive</b> &#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a>
be equal to some value
in the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> or
be equal to <a href="#f-mae-value" class="propref" shape="rect">{value}</a> in <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>. </span>
</p><p>
<a href="#dt-maxExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxExclusive<span class="arrow">&#183;</span></a> provides for:
</p><ul><li><div class="p">
Constraining a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> to values with a
specific exclusive upper
bound.
</div></li></ul><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following is the definition of a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatype which limits values to integers less than or equal to
100, using <a href="#dt-maxExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxExclusive<span class="arrow">&#183;</span></a>.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='less-than-one-hundred-and-one'&gt;
&lt;restriction base='integer'&gt;
&lt;maxExclusive value='101'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div><div class="exampleWrapper">
<div class="p">
Note that the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of this datatype is identical to
the previous one (named 'one-hundred-or-less').
</div></div></div><div class="div4">
<h5><a name="dc-maxExclusive" id="dc-maxExclusive" shape="rect"></a>4.3.8.1 The maxExclusive Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-mae" id="f-mae" shape="rect">maxExclusive</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-mae-annotations" shape="rect" id="f-mae-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-mae-value" shape="rect" id="f-mae-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
Required.<div class="ownDesc">
<p>A value from the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</p></div>
</div>
</div>
<div class="propDefn"><a name="f-mae-fixed" shape="rect" id="f-mae-fixed"></a><div class="pdName"><span class="propdef">{fixed}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
If <a href="#f-mae-fixed" class="propref" shape="rect">{fixed}</a> is <em>true</em>, then types for which
the current type is the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> cannot specify a
value for <a href="#f-mae" class="compref" shape="rect">maxExclusive</a> other than <a href="#f-mae-value" class="propref" shape="rect">{value}</a>.
</p></div><div class="div4">
<h5><a name="xr-maxExclusive" id="xr-maxExclusive" shape="rect"></a>4.3.8.2 XML Representation of maxExclusive Schema Components</h5><p>
The XML representation for a <a href="#f-mae" class="compref" shape="rect">maxExclusive</a> schema
component is a <a href="#element-maxExclusive" class="eltref" shape="rect">&lt;maxExclusive&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>maxExclusive</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-maxExclusive" name="element-maxExclusive" shape="rect">&lt;maxExclusive</a><br clear="none" />&#160;&#160;fixed = <a href="#boolean" shape="rect">boolean</a>&#160;:&#160;false<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#dt-anySimpleType" shape="rect">anySimpleType</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/maxExclusive&gt;</p><div class="reprdep">
<a href="#f-mae-value" class="propref" shape="rect">{value}</a>&#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a>
be equal to some value
in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</div><div class="reprcompmulti"><div class="reprHead"><a href="#dt-maxExclusive" shape="rect">maxExclusive</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mae-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mae-fixed" class="propref" shape="rect">{fixed}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>fixed</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if present, otherwise <b><i>false</i></b>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mae-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-one" shape="rect">annotation mapping</a> of the
<a href="#element-maxExclusive" class="eltref" shape="rect">&lt;maxExclusive&gt;</a>
element, as defined in
section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div></div><div class="div4">
<h5><a name="maxExclusive-validation-rules" id="maxExclusive-validation-rules" shape="rect"></a>4.3.8.3 maxExclusive Validation Rules</h5><div class="constraintnote"><a id="cvc-maxExclusive-valid" name="cvc-maxExclusive-valid" shape="rect"></a><b>Validation Rule: maxExclusive Valid</b><br clear="none" /><div class="constraint"><div class="p">
A value
in an <a href="#dt-ordered" class="termref" shape="rect"><span class="arrow">&#183;</span>ordered<span class="arrow">&#183;</span></a>
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
is facet-valid with respect to
<a href="#dt-maxExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxExclusive<span class="arrow">&#183;</span></a>
if and only if
the value is less than <a href="#f-mie-value" class="propref" shape="rect">{value}</a>, according to the
datatype's order relation.
</div></div></div></div><div class="div4">
<h5><a name="maxExclusive-coss" id="maxExclusive-coss" shape="rect"></a>4.3.8.4 Constraints on maxExclusive Schema Components</h5><div class="constraintnote"><a id="maxInclusive-maxExclusive" name="maxInclusive-maxExclusive" shape="rect"></a><b>Schema Component Constraint: maxInclusive and maxExclusive</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> for both
<a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> and <a href="#dt-maxExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxExclusive<span class="arrow">&#183;</span></a>
to be specified in the same derivation step of a
<a href="#std" class="compref" shape="rect">Simple Type Definition</a>.
</div></div></div><div class="constraintnote"><a id="minExclusive-less-than-equal-to-maxExclusive" name="minExclusive-less-than-equal-to-maxExclusive" shape="rect"></a><b>Schema Component Constraint: minExclusive &lt;= maxExclusive</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> for the value specified for
<a href="#dt-minExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minExclusive<span class="arrow">&#183;</span></a> to be greater than the value
specified for <a href="#dt-maxExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxExclusive<span class="arrow">&#183;</span></a> for the same datatype.
</div></div></div><div class="constraintnote"><a id="maxExclusive-valid-restriction" name="maxExclusive-valid-restriction" shape="rect"></a><b>Schema Component Constraint: maxExclusive valid restriction</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if any of the following conditions
is true:
</div><div class="constraintlist"><div class="clnumber">1 <span class="p">
<a href="#f-mae" class="compref" shape="rect">maxExclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mae-value" class="propref" shape="rect">{value}</a> is
greater than the <a href="#f-mae-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mae" class="compref" shape="rect">maxExclusive</a>.
</span></div>
<div class="clnumber">2 <span class="p">
<a href="#f-mai" class="compref" shape="rect">maxInclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mae-value" class="propref" shape="rect">{value}</a> is
greater than the <a href="#f-mai-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mai" class="compref" shape="rect">maxInclusive</a>.
</span></div>
<div class="clnumber">3 <span class="p">
<a href="#f-mii" class="compref" shape="rect">minInclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mae-value" class="propref" shape="rect">{value}</a> is
less than or equal to the <a href="#f-mii-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mii" class="compref" shape="rect">minInclusive</a>.
</span></div>
<div class="clnumber">4 <span class="p">
<a href="#f-mie" class="compref" shape="rect">minExclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mae-value" class="propref" shape="rect">{value}</a> is
less than or equal to the <a href="#f-mie-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mie" class="compref" shape="rect">minExclusive</a>.
</span></div>
</div></div></div></div></div><div class="div3">
<h4><a name="rf-minExclusive" id="rf-minExclusive" shape="rect"></a>4.3.9 minExclusive</h4><p>
<span class="termdef"><a name="dt-minExclusive" id="dt-minExclusive" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>minExclusive</b> is the exclusive lower bound of the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> for a datatype with the <a href="#dt-ordered" class="termref" shape="rect"><span class="arrow">&#183;</span>ordered<span class="arrow">&#183;</span></a> property. The value of
<b>minExclusive</b>&#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a>
be equal to some value
in the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> or
be equal to <a href="#f-mie-value" class="propref" shape="rect">{value}</a> in <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>. </span>
</p><p>
<a href="#dt-minExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minExclusive<span class="arrow">&#183;</span></a> provides for:
</p><ul><li><div class="p">
Constraining a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> to values with a
specific exclusive lower bound.
</div></li></ul><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following is the definition of a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatype which limits values to integers greater than or equal to
100, using <a href="#dt-minExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minExclusive<span class="arrow">&#183;</span></a>.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='more-than-ninety-nine'&gt;
&lt;restriction base='integer'&gt;
&lt;minExclusive value='99'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div><div class="exampleWrapper">
<div class="p">
Note that the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of this datatype is identical to the
following
one (named 'one-hundred-or-more').
</div></div></div><div class="div4">
<h5><a name="dc-minExclusive" id="dc-minExclusive" shape="rect"></a>4.3.9.1 The minExclusive Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-mie" id="f-mie" shape="rect">minExclusive</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-mie-annotations" shape="rect" id="f-mie-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-mie-value" shape="rect" id="f-mie-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
Required.<div class="ownDesc">
<p>A value from the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</p></div>
</div>
</div>
<div class="propDefn"><a name="f-mie-fixed" shape="rect" id="f-mie-fixed"></a><div class="pdName"><span class="propdef">{fixed}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
If <a href="#f-mie-fixed" class="propref" shape="rect">{fixed}</a> is <em>true</em>, then types for which
the current type is the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> cannot specify a
value for <a href="#f-mie" class="compref" shape="rect">minExclusive</a> other than <a href="#f-mie-value" class="propref" shape="rect">{value}</a>.
</p></div><div class="div4">
<h5><a name="xr-minExclusive" id="xr-minExclusive" shape="rect"></a>4.3.9.2 XML Representation of minExclusive Schema Components</h5><p>
The XML representation for a <a href="#f-mie" class="compref" shape="rect">minExclusive</a> schema
component is a <a href="#element-minExclusive" class="eltref" shape="rect">&lt;minExclusive&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>minExclusive</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-minExclusive" name="element-minExclusive" shape="rect">&lt;minExclusive</a><br clear="none" />&#160;&#160;fixed = <a href="#boolean" shape="rect">boolean</a>&#160;:&#160;false<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#dt-anySimpleType" shape="rect">anySimpleType</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/minExclusive&gt;</p><div class="reprdep">
<a href="#f-mie-value" class="propref" shape="rect">{value}</a>&#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a>
be equal to some value
in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</div><div class="reprcompmulti"><div class="reprHead"><a href="#dt-minExclusive" shape="rect">minExclusive</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mie-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mie-fixed" class="propref" shape="rect">{fixed}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>fixed</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if present, otherwise <b><i>false</i></b>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mie-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-one" shape="rect">annotation mapping</a> of the
<a href="#element-minExclusive" class="eltref" shape="rect">&lt;minExclusive&gt;</a>
element, as defined in
section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div></div><div class="div4">
<h5><a name="minExclusive-validation-rules" id="minExclusive-validation-rules" shape="rect"></a>4.3.9.3 minExclusive Validation Rules</h5><div class="constraintnote"><a id="cvc-minExclusive-valid" name="cvc-minExclusive-valid" shape="rect"></a><b>Validation Rule: minExclusive Valid</b><br clear="none" /><div class="constraint"><div class="p">
A value in an <a href="#dt-ordered" class="termref" shape="rect"><span class="arrow">&#183;</span>ordered<span class="arrow">&#183;</span></a>&#160;<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
is facet-valid with respect to <a href="#dt-minExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minExclusive<span class="arrow">&#183;</span></a>
if and only if
the value is greater than
<a href="#f-mie-value" class="propref" shape="rect">{value}</a>, according to the
datatype's order relation.
</div></div></div></div><div class="div4">
<h5><a name="minExclusive-coss" id="minExclusive-coss" shape="rect"></a>4.3.9.4 Constraints on minExclusive Schema Components</h5><div class="constraintnote"><a id="minInclusive-minExclusive" name="minInclusive-minExclusive" shape="rect"></a><b>Schema Component Constraint: minInclusive and minExclusive</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> for both <a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a> and
<a href="#dt-minExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minExclusive<span class="arrow">&#183;</span></a> to be specified in the same derivation step of a <a href="#std" class="compref" shape="rect">Simple Type Definition</a>.
</div></div></div><div class="constraintnote"><a id="minExclusive-less-than-maxInclusive" name="minExclusive-less-than-maxInclusive" shape="rect"></a><b>Schema Component Constraint: minExclusive &lt; maxInclusive</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> for the value specified for
<a href="#dt-minExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minExclusive<span class="arrow">&#183;</span></a> to be greater than or equal to the value
specified for <a href="#dt-maxInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxInclusive<span class="arrow">&#183;</span></a> for the same datatype.
</div></div></div><div class="constraintnote"><a id="minExclusive-valid-restriction" name="minExclusive-valid-restriction" shape="rect"></a><b>Schema Component Constraint: minExclusive valid restriction</b><br clear="none" /><div class="constraint"><div class="p">It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if any of the following conditions is true:</div><div class="constraintlist"><div class="clnumber">1 <span class="p">
<a href="#f-mie" class="compref" shape="rect">minExclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mie-value" class="propref" shape="rect">{value}</a> is
less than the <a href="#f-mie-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mie" class="compref" shape="rect">minExclusive</a>.
</span></div>
<div class="clnumber">2 <span class="p">
<a href="#f-mii" class="compref" shape="rect">minInclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mie-value" class="propref" shape="rect">{value}</a> is
less than the <a href="#f-mii-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mii" class="compref" shape="rect">minInclusive</a>.
</span></div>
<div class="clnumber">3 <span class="p">
<a href="#f-mai" class="compref" shape="rect">maxInclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> and <a href="#f-mie-value" class="propref" shape="rect">{value}</a> is
greater than or equal to the
<a href="#f-mai-value" class="propref" shape="rect">{value}</a> of that <a href="#f-mai" class="compref" shape="rect">maxInclusive</a>.
</span></div>
<div class="clnumber">4 <span class="p">
<a href="#f-mae" class="compref" shape="rect">maxExclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mae-value" class="propref" shape="rect">{value}</a> is
greater than or equal to the <a href="#f-mae-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mae" class="compref" shape="rect">maxExclusive</a>.
</span></div>
</div></div></div></div></div><div class="div3">
<h4><a name="rf-minInclusive" id="rf-minInclusive" shape="rect"></a>4.3.10 minInclusive</h4><p>
<span class="termdef"><a name="dt-minInclusive" id="dt-minInclusive" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>minInclusive</b> is the inclusive lower bound of the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> for a datatype with the <a href="#dt-ordered" class="termref" shape="rect"><span class="arrow">&#183;</span>ordered<span class="arrow">&#183;</span></a> property.&#160; The value of
<b>minInclusive</b> &#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a>
be equal to some value
in the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
</span>
</p><p>
<a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a> provides for:
</p><ul><li><div class="p">
Constraining a <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> to values with a
specific inclusive lower
bound.
</div></li></ul><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following is the definition of a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatype which limits values to integers greater than or equal to
100, using <a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a>.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='one-hundred-or-more'&gt;
&lt;restriction base='integer'&gt;
&lt;minInclusive value='100'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div></div><div class="div4">
<h5><a name="dc-minInclusive" id="dc-minInclusive" shape="rect"></a>4.3.10.1 The minInclusive Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-mii" id="f-mii" shape="rect">minInclusive</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-mii-annotations" shape="rect" id="f-mii-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-mii-value" shape="rect" id="f-mii-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
Required.<div class="ownDesc">
<p>A value from the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</p></div>
</div>
</div>
<div class="propDefn"><a name="f-mii-fixed" shape="rect" id="f-mii-fixed"></a><div class="pdName"><span class="propdef">{fixed}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
If <a href="#f-mii-fixed" class="propref" shape="rect">{fixed}</a> is <em>true</em>, then types for which
the current type is the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> cannot specify a
value for <a href="#f-mii" class="compref" shape="rect">minInclusive</a> other than <a href="#f-mii-value" class="propref" shape="rect">{value}</a>.
</p></div><div class="div4">
<h5><a name="xr-minInclusive" id="xr-minInclusive" shape="rect"></a>4.3.10.2 XML Representation of minInclusive Schema Components</h5><p>
The XML representation for a <a href="#f-mii" class="compref" shape="rect">minInclusive</a> schema
component is a <a href="#element-minInclusive" class="eltref" shape="rect">&lt;minInclusive&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>minInclusive</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-minInclusive" name="element-minInclusive" shape="rect">&lt;minInclusive</a><br clear="none" />&#160;&#160;fixed = <a href="#boolean" shape="rect">boolean</a>&#160;:&#160;false<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#dt-anySimpleType" shape="rect">anySimpleType</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/minInclusive&gt;</p><div class="reprdep">
<a href="#f-mii-value" class="propref" shape="rect">{value}</a>&#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a>
be equal to some value
in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</div><div class="reprcompmulti"><div class="reprHead"><a href="#dt-minInclusive" shape="rect">minInclusive</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mii-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mii-fixed" class="propref" shape="rect">{fixed}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>fixed</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if present, otherwise <b><i>false</i></b>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-mii-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-one" shape="rect">annotation mapping</a> of the
<a href="#element-minInclusive" class="eltref" shape="rect">&lt;minInclusive&gt;</a>
element, as defined in
section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div></div><div class="div4">
<h5><a name="minInclusive-validation-rules" id="minInclusive-validation-rules" shape="rect"></a>4.3.10.3 minInclusive Validation Rules</h5><div class="constraintnote"><a id="cvc-minInclusive-valid" name="cvc-minInclusive-valid" shape="rect"></a><b>Validation Rule: minInclusive Valid</b><br clear="none" /><div class="constraint"><div class="p">
A value in an <a href="#dt-ordered" class="termref" shape="rect"><span class="arrow">&#183;</span>ordered<span class="arrow">&#183;</span></a>&#160;<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>
is facet-valid with respect to <a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a>
if and only if
the value is greater than or equal to
<a href="#f-mie-value" class="propref" shape="rect">{value}</a>, according to the
datatype's order relation.</div></div></div></div><div class="div4">
<h5><a name="minInclusive-coss" id="minInclusive-coss" shape="rect"></a>4.3.10.4 Constraints on minInclusive Schema Components</h5><div class="constraintnote"><a id="minInclusive-less-than-maxExclusive" name="minInclusive-less-than-maxExclusive" shape="rect"></a><b>Schema Component Constraint: minInclusive &lt; maxExclusive</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> for the value specified for
<a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a> to be greater than or equal to the value
specified for <a href="#dt-maxExclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>maxExclusive<span class="arrow">&#183;</span></a> for the same datatype.
</div></div></div><div class="constraintnote"><a id="minInclusive-valid-restriction" name="minInclusive-valid-restriction" shape="rect"></a><b>Schema Component Constraint: minInclusive valid restriction</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if any of the following conditions
is true:
</div><div class="constraintlist"><div class="clnumber">1 <span class="p">
<a href="#f-mii" class="compref" shape="rect">minInclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mii-value" class="propref" shape="rect">{value}</a> is
less than the <a href="#f-mii-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mii" class="compref" shape="rect">minInclusive</a>.
</span></div>
<div class="clnumber">2 <span class="p">
<a href="#f-mai" class="compref" shape="rect">maxInclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mii-value" class="propref" shape="rect">{value}</a> is
greater the <a href="#f-mai-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mai" class="compref" shape="rect">maxInclusive</a>.
</span></div>
<div class="clnumber">3 <span class="p">
<a href="#f-mie" class="compref" shape="rect">minExclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mii-value" class="propref" shape="rect">{value}</a> is
less than or equal to the <a href="#f-mie-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mie" class="compref" shape="rect">minExclusive</a>.
</span></div>
<div class="clnumber">4 <span class="p">
<a href="#f-mae" class="compref" shape="rect">maxExclusive</a> is among the members of
<a href="#std-facets" class="propref" shape="rect">{facets}</a> of <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
and <a href="#f-mii-value" class="propref" shape="rect">{value}</a> is
greater than or equal to the <a href="#f-mae-value" class="propref" shape="rect">{value}</a> of
that
<a href="#f-mae" class="compref" shape="rect">maxExclusive</a>.
</span></div>
</div></div></div></div></div><div class="div3">
<h4><a name="rf-totalDigits" id="rf-totalDigits" shape="rect"></a>4.3.11 totalDigits</h4><p>
<span class="termdef"><a name="dt-totalDigits" id="dt-totalDigits" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>totalDigits</b>
restricts the magnitude and
arithmetic
precision
of values in the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a>
of
<a href="#decimal" shape="rect">decimal</a>
and datatypes derived from it.
</span>
</p><p>
For <a href="#decimal" shape="rect">decimal</a>,
if the <a href="#f-td-value" class="propref" shape="rect">{value}</a> of <a href="#f-td" class="compref" shape="rect">totalDigits</a> is
<var>t</var>, the effect is to require that values be equal to
<var>i</var>&#160;/&#160;10<sup><var>n</var></sup>, for some
integers <var>i</var> and <var>n</var>, with
|&#160;<var>i</var>&#160;| &lt; 10<sup><var>t</var></sup>
and
0&#160;&#8804;&#160;<var>n</var>&#160;&#8804;&#160;<var>t</var>.
This has as a consequence that the values are expressible
using at most <var>t</var> digits in decimal notation.
</p><p>
The <a href="#f-td-value" class="propref" shape="rect">{value}</a> of
<a href="#f-td" class="compref" shape="rect">totalDigits</a> <span class="rfc2119">must</span> be
a <a href="#positiveInteger" shape="rect">positiveInteger</a>.
</p><p>
The term 'totalDigits' is chosen to reflect the fact that
it restricts the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> to those values that
can be represented lexically using at most
<em>totalDigits</em> digits in
decimal notation, or at most <em>totalDigits</em> digits
for the coefficient, in scientific notation.&#160;
Note that it does not restrict
the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> directly; a lexical
representation that adds
non-significant
leading or trailing
zero digits is still permitted.
It also has no effect on the values
NaN, INF, and -INF.
</p><div class="div4">
<h5><a name="dc-totalDigits" id="dc-totalDigits" shape="rect"></a>4.3.11.1 The totalDigits Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-td" id="f-td" shape="rect">totalDigits</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-td-annotations" shape="rect" id="f-td-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-td-value" shape="rect" id="f-td-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
An xs:positiveInteger value. Required.</div>
</div>
<div class="propDefn"><a name="f-td-fixed" shape="rect" id="f-td-fixed"></a><div class="pdName"><span class="propdef">{fixed}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
If <a href="#f-td-fixed" class="propref" shape="rect">{fixed}</a> is <em>true</em>, then types for which
the current type is the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
<span class="rfc2119">must</span> not specify a
value for <a href="#f-td" class="compref" shape="rect">totalDigits</a> other than
<a href="#f-td-value" class="propref" shape="rect">{value}</a>.
</p></div><div class="div4">
<h5><a name="xr-totalDigits" id="xr-totalDigits" shape="rect"></a>4.3.11.2 XML Representation of totalDigits Schema Components</h5><p>
The XML representation for a <a href="#f-td" class="compref" shape="rect">totalDigits</a> schema
component is a <a href="#element-totalDigits" class="eltref" shape="rect">&lt;totalDigits&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>totalDigits</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-totalDigits" name="element-totalDigits" shape="rect">&lt;totalDigits</a><br clear="none" />&#160;&#160;fixed = <a href="#boolean" shape="rect">boolean</a>&#160;:&#160;false<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#positiveInteger" shape="rect">positiveInteger</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/totalDigits&gt;</p><div class="reprcompmulti"><div class="reprHead"><a href="#dc-totalDigits" shape="rect">totalDigits</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-td-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-td-fixed" class="propref" shape="rect">{fixed}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>fixed</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if present, otherwise <b><i>false</i></b>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-td-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-one" shape="rect">annotation mapping</a> of the
<a href="#element-totalDigits" class="eltref" shape="rect">&lt;totalDigits&gt;</a>
element, as defined in
section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div></div><div class="div4">
<h5><a name="totalDigits-validation-rules" id="totalDigits-validation-rules" shape="rect"></a>4.3.11.3 totalDigits Validation Rules</h5><div class="constraintnote"><a id="cvc-totalDigits-valid" name="cvc-totalDigits-valid" shape="rect"></a><b>Validation Rule: totalDigits Valid</b><br clear="none" /><div class="constraint"><div class="p">A value <var>v</var>
is facet-valid with respect to a <a href="#f-td" class="compref" shape="rect">totalDigits</a> facet with
a <a href="#f-td-value" class="propref" shape="rect">{value}</a> of <var>t</var> if and only
if <var>v</var> is a
<a href="#decimal" shape="rect">decimal</a> value equal to
<var>i</var>&#160;/&#160;10<sup><var>n</var></sup>,
for some
integers <var>i</var> and <var>n</var>, with
|&#160;<var>i</var>&#160;| &lt; 10<sup><var>t</var></sup>
and
0&#160;&#8804;&#160;<var>n</var>&#160;&#8804;&#160;<var>t</var>.
</div></div></div></div><div class="div4">
<h5><a name="totalDigits-coss" id="totalDigits-coss" shape="rect"></a>4.3.11.4 Constraints on totalDigits Schema Components</h5><div class="constraintnote"><a id="totalDigits-valid-restriction" name="totalDigits-valid-restriction" shape="rect"></a><b>Schema Component Constraint: totalDigits valid restriction</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if the <a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner<span class="arrow">&#183;</span></a>'s
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
has a <a href="#f-td" class="compref" shape="rect">totalDigits</a> facet
among its <a href="#std-facets" class="propref" shape="rect">{facets}</a>
and
<a href="#f-td-value" class="propref" shape="rect">{value}</a> is
greater than the <a href="#f-td-value" class="propref" shape="rect">{value}</a> of
that <a href="#f-td" class="compref" shape="rect">totalDigits</a> facet.
</div></div></div></div></div><div class="div3">
<h4><a name="rf-fractionDigits" id="rf-fractionDigits" shape="rect"></a>4.3.12 fractionDigits</h4><p>
<span class="termdef"><a name="dt-fractionDigits" id="dt-fractionDigits" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>fractionDigits</b>
places an upper limit on the
arithmetic precision
of <a href="#decimal" shape="rect">decimal</a> values: if the <a href="#f-fd-value" class="propref" shape="rect">{value}</a> of
<b>fractionDigits</b> = <var>f</var>, then the value space is
restricted to values equal to
<var>i</var>&#160;/&#160;10<sup><var>n</var></sup> for some integers
<var>i</var> and
<var>n</var> and
0 &#8804; <var>n</var> &#8804; <var>f</var>.</span>
The value of
<b>fractionDigits</b>&#160;<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> be a <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a>
</p><p>
The term <b>fractionDigits</b> is chosen to reflect the fact that it
restricts the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> to those values that can be
represented lexically
in decimal notation using at most
<em>fractionDigits</em>
to the right of the decimal point. Note that it does not restrict
the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> directly; a
lexical representation that adds
non-significant
leading or trailing zero digits is still permitted.
</p><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following is the definition of a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatype which could be used to represent the magnitude
of a person's body temperature on the Celsius scale.
This definition would appear in a schema authored by an "end-user"
and shows how to define a datatype by specifying facet values which
constrain the range of the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='celsiusBodyTemp'&gt;
&lt;restriction base='decimal'&gt;
&lt;fractionDigits value='1'/&gt;
&lt;minInclusive value='32'/&gt;
&lt;maxInclusive value='41.7'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;
</pre></div></div><div class="div4">
<h5><a name="dc-fractionDigits" id="dc-fractionDigits" shape="rect"></a>4.3.12.1 The fractionDigits Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-fd" id="f-fd" shape="rect">fractionDigits</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-fd-annotations" shape="rect" id="f-fd-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-fd-value" shape="rect" id="f-fd-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
An xs:nonNegativeInteger value. Required.</div>
</div>
<div class="propDefn"><a name="f-fd-fixed" shape="rect" id="f-fd-fixed"></a><div class="pdName"><span class="propdef">{fixed}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>
If <a href="#f-fd-fixed" class="propref" shape="rect">{fixed}</a> is <em>true</em>, then
types for which the current type is the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
<span class="rfc2119">must</span> not
specify a value for <a href="#f-fd" class="compref" shape="rect">fractionDigits</a> other
than <a href="#f-fd-value" class="propref" shape="rect">{value}</a>.
</p></div><div class="div4">
<h5><a name="xr-fractionDigits" id="xr-fractionDigits" shape="rect"></a>4.3.12.2 XML Representation of fractionDigits Schema Components</h5><p>
The XML representation for a <a href="#f-fd" class="compref" shape="rect">fractionDigits</a> schema
component is a <a href="#element-fractionDigits" class="eltref" shape="rect">&lt;fractionDigits&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>fractionDigits</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-fractionDigits" name="element-fractionDigits" shape="rect">&lt;fractionDigits</a><br clear="none" />&#160;&#160;fixed = <a href="#boolean" shape="rect">boolean</a>&#160;:&#160;false<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/fractionDigits&gt;</p><div class="reprcompmulti"><div class="reprHead"><a href="#dc-fractionDigits" shape="rect">fractionDigits</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-fd-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-fd-fixed" class="propref" shape="rect">{fixed}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>fixed</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if present, otherwise <b><i>false</i></b>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-fd-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-one" shape="rect">annotation mapping</a> of the
<a href="#element-fractionDigits" class="eltref" shape="rect">&lt;fractionDigits&gt;</a>
element, as defined in
section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div></div><div class="div4">
<h5><a name="fractionDigits-validation-rules" id="fractionDigits-validation-rules" shape="rect"></a>4.3.12.3 fractionDigits Validation Rules</h5><div class="constraintnote"><a id="cvc-fractionDigits-valid" name="cvc-fractionDigits-valid" shape="rect"></a><b>Validation Rule: fractionDigits Valid</b><br clear="none" /><div class="constraint"><div class="p">
A value
is facet-valid with
respect to <a href="#dt-fractionDigits" class="termref" shape="rect"><span class="arrow">&#183;</span>fractionDigits<span class="arrow">&#183;</span></a>
if and only if
that value is equal to
<var>i</var>&#160;/&#160;10<sup><var>n</var></sup> for integer
<var>i</var> and
<var>n</var>, with
0 &#8804; <var>n</var> &#8804; <a href="#f-fd-value" class="propref" shape="rect">{value}</a>.
</div></div></div></div><div class="div4">
<h5><a name="fractionDigits-coss" id="fractionDigits-coss" shape="rect"></a>4.3.12.4 Constraints on fractionDigits Schema Components</h5><div class="constraintnote"><a id="fractionDigits-totalDigits" name="fractionDigits-totalDigits" shape="rect"></a><b>Schema Component Constraint: fractionDigits less than or equal to totalDigits</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> for
the <a href="#f-fd-value" class="propref" shape="rect">{value}</a> of
<a href="#f-fd" class="compref" shape="rect">fractionDigits</a>
to be greater than
that of <a href="#f-td" class="compref" shape="rect">totalDigits</a>.
</div></div></div><div class="constraintnote"><a id="fractionDigits-valid-restriction" name="fractionDigits-valid-restriction" shape="rect"></a><b>Schema Component Constraint: fractionDigits valid restriction</b><br clear="none" /><div class="constraint"><div class="p">
It is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> if <a href="#dt-fractionDigits" class="termref" shape="rect"><span class="arrow">&#183;</span>fractionDigits<span class="arrow">&#183;</span></a> is among the members of <a href="#std-facets" class="propref" shape="rect">{facets}</a> of
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> and
<a href="#f-fd-value" class="propref" shape="rect">{value}</a> is greater than the <a href="#f-fd-value" class="propref" shape="rect">{value}</a> of
that
<a href="#dt-fractionDigits" class="termref" shape="rect"><span class="arrow">&#183;</span>fractionDigits<span class="arrow">&#183;</span></a>.
</div></div></div></div></div><div class="div3">
<h4><a name="rf-assertions" id="rf-assertions" shape="rect"></a>4.3.13 Assertions</h4><p><span class="termdef"><a name="dt-assertions" id="dt-assertions" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>Assertions</b> constrain the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> by requiring the values to satisfy specified XPath
(<a href="#XPATH2" shape="rect">[XPath 2.0]</a>) expressions. The value of
the <a href="#f-a" class="compref" shape="rect">assertions</a> facet
is a sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#as" shape="rect">Assertion</a>
components as defined in
<a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.</span></p><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<p>The following is the definition of a <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a>
datatype which allows all integers but 0 by using an assertion to
disallow the value 0.</p></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='nonZeroInteger'&gt;
&lt;restriction base='integer'&gt;
&lt;assertion test='$value ne 0'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;
</pre></div></div><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<p>The following example defines the datatype "triple",
whose <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> is the set of integers evenly divisible by
three.</p></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='triple'&gt;
&lt;restriction base='integer'&gt;
&lt;assertion test='$value mod 3 eq 0'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div><div class="exampleWrapper">
<p>The same datatype can be defined without the use of assertions,
but the pattern necessary to represent the set of triples is
long and error-prone:</p></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='triple'&gt;
&lt;restriction base='integer'&gt;
&lt;pattern value=
"([0369]|[147][0369]*[258]|(([258]|[147][0369]*[147])([0369]|[258][0369]*[147])*([147]|[258][0369]*[258]))*"/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div><div class="exampleWrapper">
<p>The assertion used in the first version of "triple" is
likely to be clearer for many readers of the schema document.</p></div></div><div class="div4">
<h5><a name="dc-assertions" id="dc-assertions" shape="rect"></a>4.3.13.1 The assertions Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-a" id="f-a" shape="rect">assertions</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-a-annotations" shape="rect" id="f-a-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-a-value" shape="rect" id="f-a-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
<div class="ownDesc">
<p>A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#as" shape="rect">Assertion</a> components.</p></div>
</div>
</div>
</div></div>
</div>
</div>
</div><div class="div4">
<h5><a name="xr-assertions" id="xr-assertions" shape="rect"></a>4.3.13.2 XML Representation of assertions Schema Components</h5><p>The XML representation for an <a href="#f-a" class="compref" shape="rect">assertions</a> schema component is
one or more <a href="#element-assertion" class="eltref" shape="rect">&lt;assertion&gt;</a> element information items. The
correspondences between the properties of the information item and
properties of the component are as follows:</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>assertion</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-assertion" name="element-assertion" shape="rect">&lt;assertion</a><br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>test</b> = <i>an XPath expression</i><br clear="none" />&#160;&#160;xpathDefaultNamespace =
(<a href="#anyURI" shape="rect">anyURI</a> | (<var>##defaultNamespace</var> | <var>##targetNamespace</var> | <var>##local</var>))
<br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/assertion&gt;</p><div class="reprcompmulti"><div class="reprHead"><a href="#dc-assertions" shape="rect">assertions</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-a-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
A sequence whose members are <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#as" shape="rect">Assertion</a>s drawn from the following sources,
in order:
<div class="constraintlist"><div class="clnumber">1 <span class="p">If the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> of the
<a href="#dt-owner" class="termref" shape="rect"><span class="arrow">&#183;</span>owner<span class="arrow">&#183;</span></a> has an <a href="#f-a" class="compref" shape="rect">assertions</a> facet among its
<a href="#std-facets" class="propref" shape="rect">{facets}</a>, then the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#as" shape="rect">Assertion</a>s which appear in the
<a href="#f-p-value" class="propref" shape="rect">{value}</a> of that
<a href="#f-a" class="compref" shape="rect">assertions</a> facet.</span></div>
<div class="clnumber">2 <span class="p"><a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#as" shape="rect">Assertion</a>s corresponding to the <a href="#element-assertion" class="eltref" shape="rect">&lt;assertion&gt;</a> element
information items among the <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[children]</a> of <a href="#element-restriction" class="eltref" shape="rect">&lt;restriction&gt;</a>,
if any, in document order. For
details of the construction of the <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#as" shape="rect">Assertion</a> components, see
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-assertion" shape="rect">section 3.13.2</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</span></div>
</div>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-a-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The empty sequence.
<div class="note"><div class="p"><b>Note:</b>
Annotations specified within an <a href="#element-assertion" class="eltref" shape="rect">&lt;assertion&gt;</a> element are captured by
the individual <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#as" shape="rect">Assertion</a> component to which it maps.
</div></div>
</div></div></div></div><div class="div4">
<h5><a name="assertions-validation-rules" id="assertions-validation-rules" shape="rect"></a>4.3.13.3 Assertions Validation Rules</h5><p>The following rule refers to
"the nearest built-in" datatype
and to the "XDM representation" of a value
under a datatype.
<span class="termdef"><a name="dt-optype" id="dt-optype" title="" shape="rect">[Definition:]&#160;&#160;</a>For
any datatype <var>T</var>, the <b>nearest built-in datatype</b> to
<var>T</var> is the first <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatype encountered in following
the chain of links connecting each datatype to its
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>. If <var>T</var> is a <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatype, then the
nearest built-in datatype of <var>T</var> is <var>T</var> itself; otherwise,
it is the nearest built-in datatype of <var>T</var>'s <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.</span>
</p><div class="p">
<div class="termdef"><a name="dt-xdmrep" id="dt-xdmrep" title="" shape="rect">[Definition:]&#160;&#160;</a>For
any value <var>V</var>
and any datatype
<var>T</var>, the <b>XDM representation of <var>V</var> under
<var>T</var></b> is
defined recursively as follows. Call the XDM representation
<var>X</var>. Then<div class="constraintlist"><div class="clnumber">1 <span class="p">If <var>T</var> = <a href="#dt-anySimpleType" class="termref" shape="rect"><span class="arrow">&#183;</span><code>xs:anySimpleType</code><span class="arrow">&#183;</span></a> or <a href="#dt-anyAtomicType" class="termref" shape="rect"><span class="arrow">&#183;</span><code>xs:anyAtomicType</code><span class="arrow">&#183;</span></a> then <var>X</var> is <var>V</var>,
and the <a href="http://www.w3.org/TR/xpath20/#dt-dynamic-type" shape="rect">dynamic
type</a> of <var>X</var> is <code>xs:untypedAtomic</code>.
</span></div>
<div class="clnumber">2 <span class="p">If <var>T</var> . <a href="#std-variety" class="propref" shape="rect">{variety}</a> = <b><i>atomic</i></b>,
then
let <var>T2</var> be the <a href="#dt-optype" class="termref" shape="rect"><span class="arrow">&#183;</span>nearest built-in datatype<span class="arrow">&#183;</span></a> to <var>T</var>.
If <var>V</var> is a member of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <var>T2</var>, then
<var>X</var> is <var>V</var> and the
<a href="http://www.w3.org/TR/xpath20/#dt-dynamic-type" shape="rect">dynamic type</a>
of <var>X</var> is <var>T2</var>.
Otherwise (i.e. if <var>V</var> is not a member of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <var>T2</var>),
<var>X</var> is the <a href="#dt-xdmrep" class="termref" shape="rect"><span class="arrow">&#183;</span>XDM representation<span class="arrow">&#183;</span></a> of <var>V</var>
under <var>T2</var> . <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</span></div>
<div class="clnumber">3 <span class="p">If <var>T</var> . <a href="#std-variety" class="propref" shape="rect">{variety}</a> = <b><i>list</i></b>,
then <var>X</var> is a sequence of atomic values, each atomic value
being the <a href="#dt-xdmrep" class="termref" shape="rect"><span class="arrow">&#183;</span>XDM representation<span class="arrow">&#183;</span></a> of the corresponding
item in the list <var>V</var> under <var>T</var> . <a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a>.
</span></div>
<div class="clnumber">4 <span class="p">If <var>T</var> . <a href="#std-variety" class="propref" shape="rect">{variety}</a> = <b><i>union</i></b>,
then <var>X</var> is the <a href="#dt-xdmrep" class="termref" shape="rect"><span class="arrow">&#183;</span>XDM representation<span class="arrow">&#183;</span></a> of <var>V</var>
under the <a href="#dt-active-basic-member" class="termref" shape="rect"><span class="arrow">&#183;</span>active basic member<span class="arrow">&#183;</span></a> of <var>V</var>
when validated against <var>T</var>.
If there is no <a href="#dt-active-basic-member" class="termref" shape="rect"><span class="arrow">&#183;</span>active basic member<span class="arrow">&#183;</span></a>,
then <var>V</var> has no <a href="#dt-xdmrep" class="termref" shape="rect"><span class="arrow">&#183;</span>XDM representation<span class="arrow">&#183;</span></a> under <var>T</var>.</span></div>
</div>
</div>
<div class="note"><div class="p"><b>Note:</b> If the <a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a> of a
<a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> is a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, or the <a href="#dt-active-basic-member" class="termref" shape="rect"><span class="arrow">&#183;</span>active basic member<span class="arrow">&#183;</span></a> is
a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>, then several steps may be necessary before the <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a>
datatype which serves as the <a href="http://www.w3.org/TR/xpath20/#dt-dynamic-type" shape="rect">dynamic
type</a> of <var>X</var> is found.
</div><div class="p">Because the <a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a>
of a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> is required to be an <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> or <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatype,
and the <a href="#dt-active-basic-member" class="termref" shape="rect"><span class="arrow">&#183;</span>active basic member<span class="arrow">&#183;</span></a> of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
which accepts the value <var>V</var> is by definition not a
<a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, the recursive rule given above is guaranteed to
terminate in a sequence of one or more <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> values,
each belonging to an <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatype.</div></div>
</div><div class="constraintnote"><a id="cvc-assertions-valid" name="cvc-assertions-valid" shape="rect"></a><b>Validation Rule: Assertions Valid</b><br clear="none" /><div class="constraint"><div class="p">A value <var>V</var>
is facet-valid with respect to an
<a href="#f-a" class="compref" shape="rect">assertions</a> facet
belonging to a simple type <var>T</var>
if and only if the {test}
property of each <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#as" shape="rect">Assertion</a> in its <a href="#f-a-value" class="propref" shape="rect">{value}</a> evaluates to <code>true</code> under the
conditions laid out below, without raising any
<a href="http://www.w3.org/TR/2007/REC-xpath20-20070123/#dt-dynamic-error" shape="rect">dynamic error</a> or
<a href="http://www.w3.org/TR/2007/REC-xpath20-20070123/#dt-type-error" shape="rect">type error</a>.</div><div class="p">Evaluation of {test} is performed as defined in
<a href="#XPATH2" shape="rect">[XPath 2.0]</a>, with the following conditions:</div><div class="constraintlist"><div class="clnumber">1 <!--* no span class='p' possible here *-->The XPath expression {test} is evaluated,
following the rules given in <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#cvc-xpath" shape="rect">XPath Evaluation</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>,
with the
following modifications.
<div class="constraintlist"><div class="clnumber">1.1 <span class="p">
The <a href="http://www.w3.org/TR/2007/REC-xpath20-20070123/#dt-in-scope-variables" shape="rect">in-scope variables</a>
in the <a href="http://www.w3.org/TR/2007/REC-xpath20-20070123/#dt-static-context" shape="rect">static context</a>
is a set with a single member. The <code>expanded QName</code>
of that member has no namespace
URI and
has
'<code>value</code>' as the local
name. The (static) <code>type</code> of the member is
<code>anyAtomicType*</code>.
</span><div class="note"><div class="p"><b>Note:</b> The XDM type label <code>anyAtomicType*</code> simply says
that for static typing purposes the variable <code>$value</code>
will have a value consisting of a sequence of zero or more
atomic values.
</div></div></div>
<div class="clnumber">1.2 <span class="p">There is no <a href="http://www.w3.org/TR/xpath20/#dt-context-item" shape="rect">context
item</a> for the evaluation of the XPath expression.
</span><div class="note"><div class="p"><b>Note:</b> In the terminology of <a href="#XPATH2" shape="rect">[XPath 2.0]</a>, the
<a href="http://www.w3.org/TR/xpath20/#dt-context-item" shape="rect">context
item</a> is "undefined".
</div></div><div class="note"><div class="p"><b>Note:</b>
As a consequence the expression '<code>.</code>',
or any implicit or
explicit reference to the context item, will raise a
dynamic error, which will cause the assertion to be treated as false.
If an error is detected statically, then the assertion
violates the schema component constraint
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#xpath-valid" shape="rect">XPath Valid</a>
and causes an error to be flagged in the schema.
</div><div class="p">The variable "<code>$value</code>" can be
used to refer to the value being checked.
</div></div></div>
<div class="clnumber">1.3 <span class="p">There is likewise no value for the
<a href="http://www.w3.org/TR/xpath20/#dt-context-size" shape="rect">context
size</a>
and the
<a href="http://www.w3.org/TR/xpath20/#dt-context-position" shape="rect">context
position</a> in the <a href="http://www.w3.org/TR/2007/REC-xpath20-20070123/#dt-dynamic-context" shape="rect">dynamic context</a>
used for evaluation of the assertion.
</span></div>
<div class="clnumber">1.4 <span class="p">
The <a href="http://www.w3.org/TR/2007/REC-xpath20-20070123/#dt-variable-values" shape="rect">variable values</a>
in the <a href="http://www.w3.org/TR/2007/REC-xpath20-20070123/#dt-dynamic-context" shape="rect">dynamic context</a>
is a set with a single member. The <code>expanded QName</code>
of that member has no
namespace URI
and '<code>value</code>' as the local
name. The <code>value</code> of the member is
the
<a href="#dt-xdmrep" class="termref" shape="rect"><span class="arrow">&#183;</span>XDM representation<span class="arrow">&#183;</span></a> of <var>V</var>
under <var>T</var>.
</span></div>
<div class="clnumber">1.5 <span class="p">If <var>V</var> has no <a href="#dt-xdmrep" class="termref" shape="rect"><span class="arrow">&#183;</span>XDM representation<span class="arrow">&#183;</span></a> under <var>T</var>,
then the XPath expression cannot usefully be evaluated,
and <var>V</var> is not facet-valid against the <a href="#f-a" class="compref" shape="rect">assertions</a>
facet of <var>T</var>.
</span></div>
</div>
</div>
<div class="clnumber">2 <span class="p">The evaluation result is converted to either <code>true</code> or
<code>false</code> as if by a call to the XPath
<a href="http://www.w3.org/TR/2007/REC-xpath-functions-20070123/#func-boolean" shape="rect">fn:boolean</a> function.</span></div>
</div></div></div></div><div class="div4">
<h5><a name="assertions-coss" id="assertions-coss" shape="rect"></a>4.3.13.4 Constraints on assertions Schema Components</h5><div class="constraintnote"><a id="cos-assertions-restriction" name="cos-assertions-restriction" shape="rect"></a><b>Schema Component Constraint: Valid restriction of assertions</b><br clear="none" /><div class="constraint"><div class="p">The <a href="#f-a-value" class="propref" shape="rect">{value}</a> of the <a href="#f-a" class="compref" shape="rect">assertions</a> facet
on the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> <span class="rfc2119">must</span> be a prefix of
the <a href="#f-a-value" class="propref" shape="rect">{value}</a>.</div><div class="note"><div class="p"><b>Note:</b> For components constructed from XML representations in schema documents,
the satisfaction of this constraint is a consequence of the XML mapping rules:
any assertion imposed by a simple type definition <var>S</var> will always
also be imposed by any type derived from <var>S</var> by <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a>.
This constraint ensures that components constructed by other means
(so-called "born-binary" components) similarly preserve
<a href="#f-a" class="compref" shape="rect">assertions</a> facets across <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a>.</div></div></div></div></div></div><div class="div3">
<h4><a name="rf-explicitTimezone" id="rf-explicitTimezone" shape="rect"></a>4.3.14 explicitTimezone</h4><p><span class="termdef"><a name="dt-timezone" id="dt-timezone" title="" shape="rect">[Definition:]&#160;&#160;</a>
<b>explicitTimezone</b> is a
three-valued facet which can can be used to
require or prohibit the time zone offset in date/time datatypes.</span></p><div class="exampleOuter">
<div class="exampleHeader">Example</div>
<div class="exampleWrapper">
<div class="p">
The following <a href="#dt-user-defined" class="termref" shape="rect"><span class="arrow">&#183;</span>user-defined<span class="arrow">&#183;</span></a> datatype accepts only
<a href="#date" shape="rect">date</a> values without a time zone offset,
using the <a href="#f-tz" class="compref" shape="rect">explicitTimezone</a> facet.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='bare-date'&gt;
&lt;restriction base='date'&gt;
&lt;explicitTimezone value='prohibited'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div><div class="exampleWrapper">
<div class="p">
The same effect could also be achieved using the
<a href="#f-p" class="compref" shape="rect">pattern</a> facet, as shown below,
but it is somewhat less clear what is going on in
this derivation, and it is better practice to use
the more straightforward <a href="#f-tz" class="compref" shape="rect">explicitTimezone</a>
for this purpose.
</div></div><div class="exampleInner">
<pre xml:space="preserve">&lt;simpleType name='bare-date'&gt;
&lt;restriction base='date'&gt;
&lt;pattern value='[^:Z]*'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div></div><div class="div4">
<h5><a name="dc-explicitTimezone" id="dc-explicitTimezone" shape="rect"></a>4.3.14.1 The explicitTimezone Schema Component</h5><div class="schemaComp">
<div class="component">
<div class="compHeader">
<span class="schemaComp">Schema&#160;Component: </span><a name="f-tz" id="f-tz" shape="rect">explicitTimezone</a></div>
<div class="compBody">
<div class="propList">
<div class="propDefn"><a name="f-tz-annotations" shape="rect" id="f-tz-annotations"></a><div class="pdName"><span class="propdef">{annotations}</span></div>
<div class="pdDef">
A sequence of <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#a" class="compref" shape="rect">Annotation</a> components. </div>
</div>
<div class="propDefn"><a name="f-tz-value" shape="rect" id="f-tz-value"></a><div class="pdName"><span class="propdef">{value}</span></div>
<div class="pdDef">
One of {<span class="enumval">required</span>, <span class="enumval">prohibited</span>, <span class="enumval">optional</span>}. Required.</div>
</div>
<div class="propDefn"><a name="f-tz-fixed" shape="rect" id="f-tz-fixed"></a><div class="pdName"><span class="propdef">{fixed}</span></div>
<div class="pdDef">
An xs:boolean value. Required.</div>
</div>
</div></div>
</div>
</div>
<p>If <a href="#f-tz-fixed" class="propref" shape="rect">{fixed}</a> is <em>true</em>, then datatypes for which
the current type is the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> cannot specify a
value for <a href="#f-tz" class="compref" shape="rect">explicitTimezone</a> other than <a href="#f-tz-value" class="propref" shape="rect">{value}</a>.</p><div class="note"><div class="p"><b>Note:</b> It is a consequence of
<a href="#timezone-valid-restriction" shape="rect">timezone valid restriction (&#167;4.3.14.4)</a> that the value of
the <a href="#f-tz" class="compref" shape="rect">explicitTimezone</a> facet cannot be changed unless that
value is <b><i>optional</i></b>, regardless of
whether <a href="#f-tz-fixed" class="propref" shape="rect">{fixed}</a> is
<b><i>true</i></b> or <b><i>false</i></b>.&#160; Accordingly,
<a href="#f-tz-fixed" class="propref" shape="rect">{fixed}</a> is relevant only when
<a href="#f-tz-value" class="propref" shape="rect">{value}</a> is <b><i>optional</i></b>.</div></div></div><div class="div4">
<h5><a name="xr-timezone" id="xr-timezone" shape="rect"></a>4.3.14.2 XML Representation of explicitTimezone Schema Components</h5><p>
The XML representation for an <a href="#f-tz" class="compref" shape="rect">explicitTimezone</a> schema
component is an <a href="#element-explicitTimezone" class="eltref" shape="rect">&lt;explicitTimezone&gt;</a> element information item. The
correspondences between the properties of the information item and
properties of the component are as follows:
</p><div class="reprdef"><div class="reprHeader"><span class="reprdef">XML Representation Summary</span>: <code>explicitTimezone</code>&#160;Element Information Item</div><div class="reprBody"><p class="element-syntax-1"><a id="element-explicitTimezone" name="element-explicitTimezone" shape="rect">&lt;explicitTimezone</a><br clear="none" />&#160;&#160;fixed = <a href="#boolean" shape="rect">boolean</a>&#160;:&#160;false<br clear="none" />&#160;&#160;id = <a href="#ID" shape="rect">ID</a><br clear="none" />&#160;&#160;<b>value</b> = <a href="#NCName" shape="rect">NCName</a><br clear="none" />&#160;&#160;<em>{any attributes with non-schema namespace . . .}</em>&gt;<br clear="none" /><em>&#160;&#160;Content: </em>(<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#element-annotation" class="eltref" shape="rect">annotation</a>?)<br clear="none" />&lt;/explicitTimezone&gt;</p><div class="reprcompmulti"><div class="reprHead"><a href="#dc-explicitTimezone" shape="rect">explicitTimezone</a> <strong>Schema Component</strong></div></div><div class="mapProp"><strong>Property</strong></div><div class="mapRepr"><strong>Representation</strong></div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-tz-value" class="propref" shape="rect">{value}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>value</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-tz-fixed" class="propref" shape="rect">{fixed}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-vv" shape="rect">actual value</a> of the <code>fixed</code> <a href="http://www.w3.org/TR/xml-infoset/#infoitem.element" class="xpropref" shape="rect">[attribute]</a>, if present, otherwise <b><i>false</i></b>
</div><div class="mapSep">&#160;</div><div class="mapProp"><a href="#f-tz-annotations" class="propref" shape="rect">{annotations}</a></div><div class="mapRepr">
The <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#key-am-one" shape="rect">annotation mapping</a> of the
<a href="#element-explicitTimezone" class="eltref" shape="rect">&lt;explicitTimezone&gt;</a>
element, as defined in
section <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#declare-annotation" shape="rect">XML Representation of Annotation Schema Components</a>
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
</div></div></div></div><div class="div4">
<h5><a name="timezone-vr" id="timezone-vr" shape="rect"></a>4.3.14.3 explicitTimezone Validation Rules</h5><div class="constraintnote"><a id="cvc-explicitTimezone-valid" name="cvc-explicitTimezone-valid" shape="rect"></a><b>Validation Rule: explicitOffset Valid</b><br clear="none" /><div class="constraint"><div class="p">
A <a href="#dateTime" shape="rect">dateTime</a> value <var>V</var>
is facet-valid with respect to <a href="#dt-timezone" class="termref" shape="rect"><span class="arrow">&#183;</span>explicitTimezone<span class="arrow">&#183;</span></a>
if and only if
<b>one</b> of the following is true<div class="constraintlist"><div class="clnumber">1 <span class="p">The <a href="#f-tz-value" class="propref" shape="rect">{value}</a> of the facet is
<b><i>required</i></b> and <var>V</var> has a (non-<b><i>absent</i></b>)
value for the <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
property.</span></div>
<div class="clnumber">2 <span class="p">The <a href="#f-tz-value" class="propref" shape="rect">{value}</a> of the facet is
<b><i>prohibited</i></b> and the value for the <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
property in <var>V</var> is <b><i>absent</i></b>.</span></div>
<div class="clnumber">3 <span class="p">The <a href="#f-tz-value" class="propref" shape="rect">{value}</a> of the facet is
<b><i>optional</i></b>.</span></div>
</div>
</div></div></div></div><div class="div4">
<h5><a name="timezone-coss" id="timezone-coss" shape="rect"></a>4.3.14.4 Constraints on explicitTimezone Schema Components</h5><div class="constraintnote"><a id="timezone-valid-restriction" name="timezone-valid-restriction" shape="rect"></a><b>Schema Component Constraint: timezone valid restriction</b><br clear="none" /><div class="constraint"><div class="p">
If the <a href="#f-tz" class="compref" shape="rect">explicitTimezone</a> facet
on the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>
has a <a href="#f-tz-value" class="propref" shape="rect">{value}</a> other than <b><i>optional</i></b>,
then
the <a href="#f-tz-value" class="propref" shape="rect">{value}</a> of the facet on the
<a href="#dt-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restriction<span class="arrow">&#183;</span></a> <span class="rfc2119">must</span> be equal to the <a href="#f-tz-value" class="propref" shape="rect">{value}</a> on
the <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>; otherwise
it is an <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a>.</div><div class="note"><div class="p"><b>Note:</b> The effect of this rule is to allow datatypes with
a <a href="#f-tz" class="compref" shape="rect">explicitTimezone</a> value of <b><i>optional</i></b> to be
restricted by specifying a value of <b><i>required</i></b>
or <b><i>prohibited</i></b>, and to forbid any other derivations
using this facet.
</div></div></div></div></div></div></div></div><div class="div1">
<h2><a name="conformance" id="conformance" shape="rect"></a>5 Conformance</h2><p><em>XSD 1.1: Datatypes</em> is intended
to be usable in a variety of contexts.</p><p>In the usual case, it will embedded in a
<b>host language</b> such as <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>,
which refers to this specification normatively to define some part of
the host language. In some cases, <em>XSD 1.1: Datatypes</em> may
be implemented independently of any host language.
</p><div class="block">Certain aspects of the behavior of conforming
processors are described in this specification as
<a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> or <a href="#key-impl-dep" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-dependent<span class="arrow">&#183;</span></a>.
<ul><li><div class="p"><span class="termdef"><a name="key-impl-def" id="key-impl-def" title="" shape="rect">[Definition:]&#160;&#160;</a>Something
which <span class="rfc2119">may</span> vary among conforming implementations, but which <span class="rfc2119">must</span>
be specified by the implementor for each particular implementation,
is <b>implementation-defined</b>.</span></div></li><li><div class="p"><span class="termdef"><a name="key-impl-dep" id="key-impl-dep" title="" shape="rect">[Definition:]&#160;&#160;</a>Something
which <span class="rfc2119">may</span> vary among conforming implementations, is not specified by
this or any W3C specification, and is not required to be specified
by the implementor for any particular implementation,
is <b>implementation-dependent</b>.</span>
</div></li></ul>
Anything described in this specification as <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> or
<a href="#key-impl-dep" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-dependent<span class="arrow">&#183;</span></a> <span class="rfc2119">may</span> be further constrained by the specifications
of a host language in which the datatypes and other material
specified here are used.
A list of implementation-defined and implementation-dependent
features can be found in <a href="#idef-idep" shape="rect">Implementation-defined and implementation-dependent features (normative) (&#167;H)</a>
</div><div class="div2">
<h3><span class="nav"> <a href="#independent-impl" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="hostlangs" id="hostlangs" shape="rect"></a>5.1 Host Languages</h3><p>When <em>XSD 1.1: Datatypes</em> is embedded in a host
language, the definition of conformance is specified by the
host language, not by this specification. That is, when this
specification is implemented in the context of an implementation
of a host language, the question of conformance to this
specification (separate from the host language) does not arise.</p><p>This specification imposes certain constraints on the
embedding of <em>XSD 1.1: Datatypes</em> by a host
language; these are indicated in the normative text by
the use of the verbs '<span class="rfc2119">must</span>', etc.,
with the phrase "host language" as the subject
of the verb.</p><div class="note"><div class="p"><b>Note:</b> For convenience, the most important of these constraints
are noted here:<ul><li><div class="p">Host languages <span class="rfc2119">should</span> specify that all of the datatypes decribed
here as built-ins are automatically available.</div></li><li><div class="p">Host languages <span class="rfc2119">may</span> specify that additional datatypes are also
made available automatically.</div></li><li><div class="p">If user-defined datatypes are to be supported in the host language,
then the host language <span class="rfc2119">must</span> specify how user-defined datatypes are
defined and made available for use.</div></li></ul>
</div></div><p>
In addition, host languages <span class="rfc2119">must</span> require conforming
implementations of
the host language to obey all of the constraints and rules
specified here.</p></div><div class="div2">
<h3><span class="nav"><a href="#hostlangs" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#data-conformance" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="independent-impl" id="independent-impl" shape="rect"></a>5.2 Independent implementations</h3><div class="p"><div class="termdef"><a name="dt-minimally-conforming" id="dt-minimally-conforming" title="" shape="rect">[Definition:]&#160;&#160;</a>Implementations claiming <b>minimal conformance</b> to this specification
independent of any host language <span class="rfc2119">must</span> do
<b>all</b> of the following:<div class="constraintlist"><div class="clnumber">1<a id="support-all-primitives" name="support-all-primitives" shape="rect"> </a><span class="p">Support all the <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatypes defined in this specification.</span></div>
<div class="clnumber">2<a id="implement-all-cos" name="implement-all-cos" shape="rect"> </a><span class="p">Completely and correctly implement all of
the <a href="#dt-cos" class="termref" shape="rect"><span class="arrow">&#183;</span>constraints on schemas<span class="arrow">&#183;</span></a>
defined in this specification.</span></div>
<div class="clnumber">3<a id="implement-all-vr" name="implement-all-vr" shape="rect"> </a><span class="p">Completely and correctly implement all of
the <a href="#dt-cvc" class="termref" shape="rect"><span class="arrow">&#183;</span>Validation Rules<span class="arrow">&#183;</span></a>
defined in this specification, when checking the
datatype validity of literals against datatypes.</span></div>
</div>
</div>
</div><div class="block">Implementations claiming <b>schema-document-aware conformance</b>
to this specification, independent of any host language <span class="rfc2119">must</span> be
minimally conforming. In addition, they must do
<b>all</b> of the following:<div class="constraintlist"><div class="clnumber">1<a id="accept-std" name="accept-std" shape="rect"> </a><span class="p">Accept simple type definitions in the form specified in
<a href="#datatype-components" shape="rect">Datatype components (&#167;4)</a>.</span></div>
<div class="clnumber">2<a id="implement-all-xrc" name="implement-all-xrc" shape="rect"> </a><span class="p">Completely and correctly implement all of
rules governing the XML representation of simple type definitions
specified in <a href="#datatype-components" shape="rect">Datatype components (&#167;4)</a>.</span></div>
<div class="clnumber">3<a id="map-xml-component" name="map-xml-component" shape="rect"> </a><span class="p">Map the XML representations of simple type definitions to
simple type definition components as specified in the mapping
rules given in <a href="#datatype-components" shape="rect">Datatype components (&#167;4)</a>.</span></div>
</div>
</div><div class="note"><div class="p"><b>Note:</b> The term <b>schema-document aware</b> is used here for
parallelism with the corresponding term in <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>.
The reference to schema documents may be taken as referring
to the fact that schema-document-aware implementations accept
the XML representation of simple type definitions found in
XSD schema documents. It does <em>not</em> mean that
the simple type definitions must themselves be free-standing
XML documents, nor that they typically will be.
</div></div></div><div class="div2">
<h3><span class="nav"><a href="#independent-impl" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#partial-implementation" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="data-conformance" id="data-conformance" shape="rect"></a>5.3 Conformance of data</h3><p>Abstract representations of simple type definitions conform to this
specification if and only if they obey all of the <a href="#dt-cos" class="termref" shape="rect"><span class="arrow">&#183;</span>constraints on schemas<span class="arrow">&#183;</span></a> defined in this
specification.</p><p>XML representations of simple type definitions conform to this
specification if they obey all of the applicable rules
defined in this specification.</p><div class="note"><div class="p"><b>Note:</b> Because the conformance of the resulting simple type definition
component depends not only on the XML representation of a given
simple type definition, but on the properties of its
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>, the conformance of an XML representation of a
simple type definition does not guarantee that, in the
context of other schema components, it will map to
a conforming component.</div></div></div><div class="div2">
<h3><span class="nav"><a href="#data-conformance" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="partial-implementation" id="partial-implementation" shape="rect"></a>5.4 Partial Implementation of Infinite Datatypes</h3><p>Some <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes defined in this specification have
infinite <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a>; no finite implementation can completely
handle all their possible values. For some such datatypes, minimum
implementation limits are specified below. For other infinite types
such as <a href="#string" shape="rect">string</a>,
<a href="#hexBinary" shape="rect">hexBinary</a>, and
<a href="#base64Binary" shape="rect">base64Binary</a>, no minimum implementation limits are
specified.
</p><p>When this specification is used in the context of other languages
(as it is, for example, by <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>), the
host language may specify other minimum implementation limits.</p><p>
When presented with a literal or value exceeding the capacity of
its partial implementation of a datatype, a minimally conforming
implementation of this specification will sometimes be unable to
determine with certainty whether the value is datatype-valid or
not. Sometimes it will be unable to represent the value correctly
through its interface to any downsteam application.
</p><p>
When either of these is so, a conforming processor <span class="rfc2119">must</span> indicate
to the user and/or downstream application that it cannot process
the input data with assured correctness (much as it would indicate
if it ran out of memory). When the datatype validity of a value
or literal is uncertain because it exceeds the capacity of a
partial implementation, the literal or value <span class="rfc2119">must not</span> be treated
as invalid, and the unsupported value <span class="rfc2119">must not</span> be quietly changed
to a supported value.
</p><p>
This specification does not constrain the method used to indicate
that a literal or value in the input data has exceeded the
capacity of the implementation, or the form such indications take.
</p><p><a href="#dt-minimally-conforming" class="termref" shape="rect"><span class="arrow">&#183;</span>Minimally
conforming<span class="arrow">&#183;</span></a> processors
which set an application- or <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> limit
on the size of the values supported <span class="rfc2119">must</span> clearly document
that limit.</p><div class="block">These are the partial-implementation
<a href="#dt-minimally-conforming" class="termref" shape="rect"><span class="arrow">&#183;</span>minimal conformance<span class="arrow">&#183;</span></a>
requirements:<ul><li><div class="p">All <a href="#dt-minimally-conforming" class="termref" shape="rect"><span class="arrow">&#183;</span>minimally conforming<span class="arrow">&#183;</span></a> processors
<span class="rfc2119">must</span> support <a href="#decimal" shape="rect">decimal</a> values whose absolute value can be expressed as
<var>i</var>&#160;/&#160;10<sup><var>k</var></sup>, where
<var>i</var> and <var>k</var> are nonnegative integers such that
<var>i</var> &lt; 10<sup>16</sup> and
<var>k</var> &#8804; 16 (i.e., those expressible with sixteen total
digits).</div></li><li id="loc6048"><div class="p">All <a href="#dt-minimally-conforming" class="termref" shape="rect"><span class="arrow">&#183;</span>minimally conforming<span class="arrow">&#183;</span></a>
processors <span class="rfc2119">must</span> support nonnegative
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> values
less than 10000 (i.e., those expressible with four
digits) in all datatypes
which use the seven-property model defined in
<a href="#theSevenPropertyModel" shape="rect">The Seven-property Model (&#167;D.2.1)</a>
and have a non-<a href="#key-null" class="termref" shape="rect"><span class="arrow">&#183;</span>absent<span class="arrow">&#183;</span></a> value for
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>
(i.e. <a href="#dateTime" shape="rect">dateTime</a>,
<a href="#dateTimeStamp" shape="rect">dateTimeStamp</a>,
<a href="#date" shape="rect">date</a>,
<a href="#gYearMonth" shape="rect">gYearMonth</a>, and
<a href="#gYear" shape="rect">gYear</a>).
.</div></li><li><div class="p">All <a href="#dt-minimally-conforming" class="termref" shape="rect"><span class="arrow">&#183;</span>minimally conforming<span class="arrow">&#183;</span></a>
processors <span class="rfc2119">must</span> support
<a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> values to
milliseconds (i.e. those expressible with three
fraction digits)
in all datatypes
which use the seven-property model defined in
<a href="#theSevenPropertyModel" shape="rect">The Seven-property Model (&#167;D.2.1)</a>
and have a non-<a href="#key-null" class="termref" shape="rect"><span class="arrow">&#183;</span>absent<span class="arrow">&#183;</span></a> value for
<a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a>
(i.e. <a href="#dateTime" shape="rect">dateTime</a>,
<a href="#dateTimeStamp" shape="rect">dateTimeStamp</a>, and
<a href="#time" shape="rect">time</a>).
.</div></li><li><div class="p">All <a href="#dt-minimally-conforming" class="termref" shape="rect"><span class="arrow">&#183;</span>minimally conforming<span class="arrow">&#183;</span></a> processors
<span class="rfc2119">must</span> support fractional-second <a href="#duration" shape="rect">duration</a> values to
milliseconds (i.e. those expressible with three fraction digits).
</div></li><li><div class="p">All <a href="#dt-minimally-conforming" class="termref" shape="rect"><span class="arrow">&#183;</span>minimally conforming<span class="arrow">&#183;</span></a>
processors <span class="rfc2119">must</span> support <a href="#duration" shape="rect">duration</a> values with
<a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> values in the range &#8722;119999 to 119999
months (9999 years and 11 months) and <a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a>
values in the range &#8722;31622400 to 31622400 seconds (one
leap-year).</div></li></ul>
</div></div></div></div><div class="back"><div class="div1">
<h2><a name="schema" id="schema" shape="rect"></a>A Schema for Schema Documents (Datatypes)
(normative)</h2><p>The XML representation of the datatypes-relevant
part of the schema for schema documents is presented here
as a normative
part of the specification.
Independent copies of this material are
available in an undated (mutable) version at
<a href="http://www.w3.org/2009/XMLSchema/datatypes.xsd" shape="rect">http://www.w3.org/2009/XMLSchema/datatypes.xsd</a>
and in a dated (immutable) version at
<a href="http://www.w3.org/2011/07/datatypes.xsd" shape="rect">http://www.w3.org/2011/07/datatypes.xsd</a>
&#8212; the mutable version will be updated with future revisions of
this specification, and the immutable one will not.
</p><p>Like any other
XML document, schema documents may carry XML and document type declarations. An
XML declaration and a document type declaration are provided here for convenience.
Since
this schema document describes the XML Schema language, the <code>targetNamespace</code>
attribute on the <code>schema</code> element refers to the XML Schema namespace
itself.</p><p>
Schema documents conforming to this specification may be in XML
1.0 or XML 1.1. Conforming implementations may accept input in
XML 1.0 or XML 1.1 or both. See <a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</p><div class="sfsScrap" id="div_schema-for-datatypes">
<a id="schema-for-datatypes" name="schema-for-datatypes" shape="rect"></a>
<div class="sfsHead">Schema for Schema Documents (Datatypes)</div>
<div class="sfsBody">
<pre xml:space="preserve">&lt;?xml version='1.0'?&gt;
&lt;!DOCTYPE xs:schema PUBLIC "-//W3C//DTD XMLSCHEMA 200102//EN" "XMLSchema.dtd" [
&lt;!--
Make sure that processors that do not read the external
subset will know about the various IDs we declare
--&gt;
&lt;!ATTLIST xs:simpleType id ID #IMPLIED&gt;
&lt;!ATTLIST xs:maxExclusive id ID #IMPLIED&gt;
&lt;!ATTLIST xs:minExclusive id ID #IMPLIED&gt;
&lt;!ATTLIST xs:maxInclusive id ID #IMPLIED&gt;
&lt;!ATTLIST xs:minInclusive id ID #IMPLIED&gt;
&lt;!ATTLIST xs:totalDigits id ID #IMPLIED&gt;
&lt;!ATTLIST xs:fractionDigits id ID #IMPLIED&gt;
&lt;!ATTLIST xs:length id ID #IMPLIED&gt;
&lt;!ATTLIST xs:minLength id ID #IMPLIED&gt;
&lt;!ATTLIST xs:maxLength id ID #IMPLIED&gt;
&lt;!ATTLIST xs:enumeration id ID #IMPLIED&gt;
&lt;!ATTLIST xs:pattern id ID #IMPLIED&gt;
&lt;!ATTLIST xs:assertion id ID #IMPLIED&gt;
&lt;!ATTLIST xs:explicitTimezone id ID #IMPLIED&gt;
&lt;!ATTLIST xs:appinfo id ID #IMPLIED&gt;
&lt;!ATTLIST xs:documentation id ID #IMPLIED&gt;
&lt;!ATTLIST xs:list id ID #IMPLIED&gt;
&lt;!ATTLIST xs:union id ID #IMPLIED&gt;
]&gt;
&lt;xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
xml:lang="en"
targetNamespace="http://www.w3.org/2001/XMLSchema"
version="datatypes.xsd (cr-20110721)"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="../datatypes/datatypes.html"&gt;
The schema corresponding to this document is normative,
with respect to the syntactic constraints it expresses in the
XML Schema language. The documentation (within 'documentation'
elements) below, is not normative, but rather highlights important
aspects of the W3C Recommendation of which this is a part.
See below (at the bottom of this document) for information about
the revision and namespace-versioning policy governing this
schema document.
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:simpleType name="derivationControl"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation&gt;
A utility type, not for public use&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:NMTOKEN"&gt;
&lt;xs:enumeration value="substitution"/&gt;
&lt;xs:enumeration value="extension"/&gt;
&lt;xs:enumeration value="restriction"/&gt;
&lt;xs:enumeration value="list"/&gt;
&lt;xs:enumeration value="union"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:group name="simpleDerivation"&gt;
&lt;xs:choice&gt;
&lt;xs:element ref="xs:restriction"/&gt;
&lt;xs:element ref="xs:list"/&gt;
&lt;xs:element ref="xs:union"/&gt;
&lt;/xs:choice&gt;
&lt;/xs:group&gt;
&lt;xs:simpleType name="simpleDerivationSet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation&gt;
#all or (possibly empty) subset of {restriction, extension, union, list}
&lt;/xs:documentation&gt;
&lt;xs:documentation&gt;
A utility type, not for public use&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:union&gt;
&lt;xs:simpleType&gt;
&lt;xs:restriction base="xs:token"&gt;
&lt;xs:enumeration value="#all"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType&gt;
&lt;xs:list&gt;
&lt;xs:simpleType&gt;
&lt;xs:restriction base="xs:derivationControl"&gt;
&lt;xs:enumeration value="list"/&gt;
&lt;xs:enumeration value="union"/&gt;
&lt;xs:enumeration value="restriction"/&gt;
&lt;xs:enumeration value="extension"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;/xs:list&gt;
&lt;/xs:simpleType&gt;
&lt;/xs:union&gt;
&lt;/xs:simpleType&gt;
&lt;xs:complexType name="simpleType" abstract="true"&gt;
&lt;xs:complexContent&gt;
&lt;xs:extension base="xs:annotated"&gt;
&lt;xs:group ref="xs:simpleDerivation"/&gt;
&lt;xs:attribute name="final" type="xs:simpleDerivationSet"/&gt;
&lt;xs:attribute name="name" type="xs:NCName"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation&gt;
Can be restricted to required or forbidden
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;/xs:attribute&gt;
&lt;/xs:extension&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;xs:complexType name="topLevelSimpleType"&gt;
&lt;xs:complexContent&gt;
&lt;xs:restriction base="xs:simpleType"&gt;
&lt;xs:sequence&gt;
&lt;xs:element ref="xs:annotation" minOccurs="0"/&gt;
&lt;xs:group ref="xs:simpleDerivation"/&gt;
&lt;/xs:sequence&gt;
&lt;xs:attribute name="name" type="xs:NCName" use="required"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation&gt;
Required at the top level
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;/xs:attribute&gt;
&lt;xs:anyAttribute namespace="##other" processContents="lax"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;xs:complexType name="localSimpleType"&gt;
&lt;xs:complexContent&gt;
&lt;xs:restriction base="xs:simpleType"&gt;
&lt;xs:sequence&gt;
&lt;xs:element ref="xs:annotation" minOccurs="0"/&gt;
&lt;xs:group ref="xs:simpleDerivation"/&gt;
&lt;/xs:sequence&gt;
&lt;xs:attribute name="name" use="prohibited"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation&gt;
Forbidden when nested
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;/xs:attribute&gt;
&lt;xs:attribute name="final" use="prohibited"/&gt;
&lt;xs:anyAttribute namespace="##other" processContents="lax"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;xs:element name="simpleType" type="xs:topLevelSimpleType" id="simpleType"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-simpleType"/&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:element name="facet" abstract="true"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation&gt;
An abstract element, representing facets in general.
The facets defined by this spec are substitutable for
this element, and implementation-defined facets should
also name this as a substitution-group head.
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:group name="simpleRestrictionModel"&gt;
&lt;xs:sequence&gt;
&lt;xs:element name="simpleType" type="xs:localSimpleType" minOccurs="0"/&gt;
&lt;xs:choice minOccurs="0"
maxOccurs="unbounded"&gt;
&lt;xs:element ref="xs:facet"/&gt;
&lt;xs:any processContents="lax"
namespace="##other"/&gt;
&lt;/xs:choice&gt;
&lt;/xs:sequence&gt;
&lt;/xs:group&gt;
&lt;xs:element name="restriction" id="restriction"&gt;
&lt;xs:complexType&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-restriction"&gt;
base attribute and simpleType child are mutually
exclusive, but one or other is required
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:complexContent&gt;
&lt;xs:extension base="xs:annotated"&gt;
&lt;xs:group ref="xs:simpleRestrictionModel"/&gt;
&lt;xs:attribute name="base" type="xs:QName" use="optional"/&gt;
&lt;/xs:extension&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;/xs:element&gt;
&lt;xs:element name="list" id="list"&gt;
&lt;xs:complexType&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-list"&gt;
itemType attribute and simpleType child are mutually
exclusive, but one or other is required
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:complexContent&gt;
&lt;xs:extension base="xs:annotated"&gt;
&lt;xs:sequence&gt;
&lt;xs:element name="simpleType" type="xs:localSimpleType"
minOccurs="0"/&gt;
&lt;/xs:sequence&gt;
&lt;xs:attribute name="itemType" type="xs:QName" use="optional"/&gt;
&lt;/xs:extension&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;/xs:element&gt;
&lt;xs:element name="union" id="union"&gt;
&lt;xs:complexType&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-union"&gt;
memberTypes attribute must be non-empty or there must be
at least one simpleType child
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:complexContent&gt;
&lt;xs:extension base="xs:annotated"&gt;
&lt;xs:sequence&gt;
&lt;xs:element name="simpleType" type="xs:localSimpleType"
minOccurs="0" maxOccurs="unbounded"/&gt;
&lt;/xs:sequence&gt;
&lt;xs:attribute name="memberTypes" use="optional"&gt;
&lt;xs:simpleType&gt;
&lt;xs:list itemType="xs:QName"/&gt;
&lt;/xs:simpleType&gt;
&lt;/xs:attribute&gt;
&lt;/xs:extension&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;/xs:element&gt;
&lt;xs:complexType name="facet"&gt;
&lt;xs:complexContent&gt;
&lt;xs:extension base="xs:annotated"&gt;
&lt;xs:attribute name="value" use="required"/&gt;
&lt;xs:attribute name="fixed" type="xs:boolean" default="false"
use="optional"/&gt;
&lt;/xs:extension&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;xs:complexType name="noFixedFacet"&gt;
&lt;xs:complexContent&gt;
&lt;xs:restriction base="xs:facet"&gt;
&lt;xs:sequence&gt;
&lt;xs:element ref="xs:annotation" minOccurs="0"/&gt;
&lt;/xs:sequence&gt;
&lt;xs:attribute name="fixed" use="prohibited"/&gt;
&lt;xs:anyAttribute namespace="##other" processContents="lax"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;xs:element name="minExclusive" type="xs:facet"
id="minExclusive"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-minExclusive"/&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:element name="minInclusive" type="xs:facet"
id="minInclusive"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-minInclusive"/&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:element name="maxExclusive" type="xs:facet"
id="maxExclusive"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-maxExclusive"/&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:element name="maxInclusive" type="xs:facet"
id="maxInclusive"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-maxInclusive"/&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:complexType name="numFacet"&gt;
&lt;xs:complexContent&gt;
&lt;xs:restriction base="xs:facet"&gt;
&lt;xs:sequence&gt;
&lt;xs:element ref="xs:annotation" minOccurs="0"/&gt;
&lt;/xs:sequence&gt;
&lt;xs:attribute name="value"
type="xs:nonNegativeInteger" use="required"/&gt;
&lt;xs:anyAttribute namespace="##other" processContents="lax"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;xs:complexType name="intFacet"&gt;
&lt;xs:complexContent&gt;
&lt;xs:restriction base="xs:facet"&gt;
&lt;xs:sequence&gt;
&lt;xs:element ref="xs:annotation" minOccurs="0"/&gt;
&lt;/xs:sequence&gt;
&lt;xs:attribute name="value" type="xs:integer" use="required"/&gt;
&lt;xs:anyAttribute namespace="##other" processContents="lax"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;xs:element name="totalDigits" id="totalDigits"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-totalDigits"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:complexType&gt;
&lt;xs:complexContent&gt;
&lt;xs:restriction base="xs:numFacet"&gt;
&lt;xs:sequence&gt;
&lt;xs:element ref="xs:annotation" minOccurs="0"/&gt;
&lt;/xs:sequence&gt;
&lt;xs:attribute name="value" type="xs:positiveInteger" use="required"/&gt;
&lt;xs:anyAttribute namespace="##other" processContents="lax"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;/xs:element&gt;
&lt;xs:element name="fractionDigits" type="xs:numFacet"
id="fractionDigits"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-fractionDigits"/&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:element name="length" type="xs:numFacet" id="length"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-length"/&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:element name="minLength" type="xs:numFacet"
id="minLength"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-minLength"/&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:element name="maxLength" type="xs:numFacet"
id="maxLength"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-maxLength"/&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:element name="enumeration" type="xs:noFixedFacet"
id="enumeration"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-enumeration"/&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:element name="whiteSpace" id="whiteSpace"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-whiteSpace"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:complexType&gt;
&lt;xs:complexContent&gt;
&lt;xs:restriction base="xs:facet"&gt;
&lt;xs:sequence&gt;
&lt;xs:element ref="xs:annotation" minOccurs="0"/&gt;
&lt;/xs:sequence&gt;
&lt;xs:attribute name="value" use="required"&gt;
&lt;xs:simpleType&gt;
&lt;xs:restriction base="xs:NMTOKEN"&gt;
&lt;xs:enumeration value="preserve"/&gt;
&lt;xs:enumeration value="replace"/&gt;
&lt;xs:enumeration value="collapse"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;/xs:attribute&gt;
&lt;xs:anyAttribute namespace="##other" processContents="lax"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;/xs:element&gt;
&lt;xs:element name="pattern" id="pattern"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-pattern"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:complexType&gt;
&lt;xs:complexContent&gt;
&lt;xs:restriction base="xs:noFixedFacet"&gt;
&lt;xs:sequence&gt;
&lt;xs:element ref="xs:annotation" minOccurs="0"/&gt;
&lt;/xs:sequence&gt;
&lt;xs:attribute name="value" type="xs:string"
use="required"/&gt;
&lt;xs:anyAttribute namespace="##other"
processContents="lax"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;/xs:element&gt;
&lt;xs:element name="assertion" type="xs:assertion"
id="assertion" substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-assertion"/&gt;
&lt;/xs:annotation&gt;
&lt;/xs:element&gt;
&lt;xs:element name="explicitTimezone" id="explicitTimezone"
substitutionGroup="xs:facet"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation
source="http://www.w3.org/TR/xmlschema11-2/#element-explicitTimezone"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:complexType&gt;
&lt;xs:complexContent&gt;
&lt;xs:restriction base="xs:facet"&gt;
&lt;xs:sequence&gt;
&lt;xs:element ref="xs:annotation" minOccurs="0"/&gt;
&lt;/xs:sequence&gt;
&lt;xs:attribute name="value" use="required"&gt;
&lt;xs:simpleType&gt;
&lt;xs:restriction base="xs:NMTOKEN"&gt;
&lt;xs:enumeration value="optional"/&gt;
&lt;xs:enumeration value="required"/&gt;
&lt;xs:enumeration value="prohibited"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;/xs:attribute&gt;
&lt;xs:anyAttribute namespace="##other" processContents="lax"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:complexContent&gt;
&lt;/xs:complexType&gt;
&lt;/xs:element&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation&gt;
In keeping with the XML Schema WG's standard versioning policy,
this schema document will persist at the URI
http://www.w3.org/2011/07/datatypes.xsd.
At the date of issue it can also be found at the URI
http://www.w3.org/2009/XMLSchema/datatypes.xsd.
The schema document at that URI may however change in the future,
in order to remain compatible with the latest version of XSD
and its namespace. In other words, if XSD or the XML Schema
namespace change, the version of this document at
http://www.w3.org/2009/XMLSchema/datatypes.xsd will change accordingly;
the version at http://www.w3.org/2011/07/datatypes.xsd will not change.
Previous dated (and unchanging) versions of this schema document
include:
http://www.w3.org/2009/04/datatypes.xsd
(XSD 1.1 Candidate Recommendation)
http://www.w3.org/2004/10/datatypes.xsd
(XSD 1.0 Recommendation, Second Edition)
http://www.w3.org/2001/05/datatypes.xsd
(XSD 1.0 Recommendation, First Edition)
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;/xs:schema&gt;
</pre></div></div></div><div class="div1">
<h2><a name="dtd-for-datatypeDefs" id="dtd-for-datatypeDefs" shape="rect"></a>B DTD for Datatype Definitions (non-normative)</h2><p>The DTD for the datatypes-specific
aspects of schema documents is given below. Note there is
<em>no</em> implication here that <code>schema</code> <span class="rfc2119">must</span> be
the root element of a document.</p><div class="sfsScrap" id="div_dtd-for-datatypes">
<a id="dtd-for-datatypes" name="dtd-for-datatypes" shape="rect"></a>
<div class="sfsHead">DTD for datatype definitions</div>
<div class="sfsBody">
<pre xml:space="preserve">&lt;!--
DTD for XML Schemas: Part 2: Datatypes
Id: datatypes.dtd,v 1.1.2.4 2005/01/31 18:40:42 cmsmcq Exp
Note this DTD is NOT normative, or even definitive.
--&gt;
&lt;!--
This DTD cannot be used on its own, it is intended
only for incorporation in XMLSchema.dtd, q.v.
--&gt;
&lt;!-- Define all the element names, with optional prefix --&gt;
&lt;!ENTITY % simpleType "%p;simpleType"&gt;
&lt;!ENTITY % restriction "%p;restriction"&gt;
&lt;!ENTITY % list "%p;list"&gt;
&lt;!ENTITY % union "%p;union"&gt;
&lt;!ENTITY % maxExclusive "%p;maxExclusive"&gt;
&lt;!ENTITY % minExclusive "%p;minExclusive"&gt;
&lt;!ENTITY % maxInclusive "%p;maxInclusive"&gt;
&lt;!ENTITY % minInclusive "%p;minInclusive"&gt;
&lt;!ENTITY % totalDigits "%p;totalDigits"&gt;
&lt;!ENTITY % fractionDigits "%p;fractionDigits"&gt;
&lt;!ENTITY % length "%p;length"&gt;
&lt;!ENTITY % minLength "%p;minLength"&gt;
&lt;!ENTITY % maxLength "%p;maxLength"&gt;
&lt;!ENTITY % enumeration "%p;enumeration"&gt;
&lt;!ENTITY % whiteSpace "%p;whiteSpace"&gt;
&lt;!ENTITY % pattern "%p;pattern"&gt;
&lt;!ENTITY % assertion "%p;assertion"&gt;
&lt;!ENTITY % explicitTimezone "%p;explicitTimezone"&gt;
&lt;!--
Customization entities for the ATTLIST of each element
type. Define one of these if your schema takes advantage
of the anyAttribute='##other' in the schema for schemas
--&gt;
&lt;!ENTITY % simpleTypeAttrs ""&gt;
&lt;!ENTITY % restrictionAttrs ""&gt;
&lt;!ENTITY % listAttrs ""&gt;
&lt;!ENTITY % unionAttrs ""&gt;
&lt;!ENTITY % maxExclusiveAttrs ""&gt;
&lt;!ENTITY % minExclusiveAttrs ""&gt;
&lt;!ENTITY % maxInclusiveAttrs ""&gt;
&lt;!ENTITY % minInclusiveAttrs ""&gt;
&lt;!ENTITY % totalDigitsAttrs ""&gt;
&lt;!ENTITY % fractionDigitsAttrs ""&gt;
&lt;!ENTITY % lengthAttrs ""&gt;
&lt;!ENTITY % minLengthAttrs ""&gt;
&lt;!ENTITY % maxLengthAttrs ""&gt;
&lt;!ENTITY % enumerationAttrs ""&gt;
&lt;!ENTITY % whiteSpaceAttrs ""&gt;
&lt;!ENTITY % patternAttrs ""&gt;
&lt;!ENTITY % assertionAttrs ""&gt;
&lt;!ENTITY % explicitTimezoneAttrs ""&gt;
&lt;!-- Define some entities for informative use as attribute
types --&gt;
&lt;!ENTITY % URIref "CDATA"&gt;
&lt;!ENTITY % XPathExpr "CDATA"&gt;
&lt;!ENTITY % QName "NMTOKEN"&gt;
&lt;!ENTITY % QNames "NMTOKENS"&gt;
&lt;!ENTITY % NCName "NMTOKEN"&gt;
&lt;!ENTITY % nonNegativeInteger "NMTOKEN"&gt;
&lt;!ENTITY % boolean "(true|false)"&gt;
&lt;!ENTITY % simpleDerivationSet "CDATA"&gt;
&lt;!--
#all or space-separated list drawn from derivationChoice
--&gt;
&lt;!--
Note that the use of 'facet' below is less restrictive
than is really intended: There should in fact be no
more than one of each of minInclusive, minExclusive,
maxInclusive, maxExclusive, totalDigits, fractionDigits,
length, maxLength, minLength within datatype,
and the min- and max- variants of Inclusive and Exclusive
are mutually exclusive. On the other hand, pattern and
enumeration and assertion may repeat.
--&gt;
&lt;!ENTITY % minBound "(%minInclusive; | %minExclusive;)"&gt;
&lt;!ENTITY % maxBound "(%maxInclusive; | %maxExclusive;)"&gt;
&lt;!ENTITY % bounds "%minBound; | %maxBound;"&gt;
&lt;!ENTITY % numeric "%totalDigits; | %fractionDigits;"&gt;
&lt;!ENTITY % ordered "%bounds; | %numeric;"&gt;
&lt;!ENTITY % unordered
"%pattern; | %enumeration; | %whiteSpace; | %length; |
%maxLength; | %minLength; | %assertion;
| %explicitTimezone;"&gt;
&lt;!ENTITY % implementation-defined-facets ""&gt;
&lt;!ENTITY % facet "%ordered; | %unordered; %implementation-defined-facets;"&gt;
&lt;!ENTITY % facetAttr
"value CDATA #REQUIRED
id ID #IMPLIED"&gt;
&lt;!ENTITY % fixedAttr "fixed %boolean; #IMPLIED"&gt;
&lt;!ENTITY % facetModel "(%annotation;)?"&gt;
&lt;!ELEMENT %simpleType;
((%annotation;)?, (%restriction; | %list; | %union;))&gt;
&lt;!ATTLIST %simpleType;
name %NCName; #IMPLIED
final %simpleDerivationSet; #IMPLIED
id ID #IMPLIED
%simpleTypeAttrs;&gt;
&lt;!-- name is required at top level --&gt;
&lt;!ELEMENT %restriction; ((%annotation;)?,
(%restriction1; |
((%simpleType;)?,(%facet;)*)),
(%attrDecls;))&gt;
&lt;!ATTLIST %restriction;
base %QName; #IMPLIED
id ID #IMPLIED
%restrictionAttrs;&gt;
&lt;!--
base and simpleType child are mutually exclusive,
one is required.
restriction is shared between simpleType and
simpleContent and complexContent (in XMLSchema.xsd).
restriction1 is for the latter cases, when this
is restricting a complex type, as is attrDecls.
--&gt;
&lt;!ELEMENT %list; ((%annotation;)?,(%simpleType;)?)&gt;
&lt;!ATTLIST %list;
itemType %QName; #IMPLIED
id ID #IMPLIED
%listAttrs;&gt;
&lt;!--
itemType and simpleType child are mutually exclusive,
one is required
--&gt;
&lt;!ELEMENT %union; ((%annotation;)?,(%simpleType;)*)&gt;
&lt;!ATTLIST %union;
id ID #IMPLIED
memberTypes %QNames; #IMPLIED
%unionAttrs;&gt;
&lt;!--
At least one item in memberTypes or one simpleType
child is required
--&gt;
&lt;!ELEMENT %maxExclusive; %facetModel;&gt;
&lt;!ATTLIST %maxExclusive;
%facetAttr;
%fixedAttr;
%maxExclusiveAttrs;&gt;
&lt;!ELEMENT %minExclusive; %facetModel;&gt;
&lt;!ATTLIST %minExclusive;
%facetAttr;
%fixedAttr;
%minExclusiveAttrs;&gt;
&lt;!ELEMENT %maxInclusive; %facetModel;&gt;
&lt;!ATTLIST %maxInclusive;
%facetAttr;
%fixedAttr;
%maxInclusiveAttrs;&gt;
&lt;!ELEMENT %minInclusive; %facetModel;&gt;
&lt;!ATTLIST %minInclusive;
%facetAttr;
%fixedAttr;
%minInclusiveAttrs;&gt;
&lt;!ELEMENT %totalDigits; %facetModel;&gt;
&lt;!ATTLIST %totalDigits;
%facetAttr;
%fixedAttr;
%totalDigitsAttrs;&gt;
&lt;!ELEMENT %fractionDigits; %facetModel;&gt;
&lt;!ATTLIST %fractionDigits;
%facetAttr;
%fixedAttr;
%fractionDigitsAttrs;&gt;
&lt;!ELEMENT %length; %facetModel;&gt;
&lt;!ATTLIST %length;
%facetAttr;
%fixedAttr;
%lengthAttrs;&gt;
&lt;!ELEMENT %minLength; %facetModel;&gt;
&lt;!ATTLIST %minLength;
%facetAttr;
%fixedAttr;
%minLengthAttrs;&gt;
&lt;!ELEMENT %maxLength; %facetModel;&gt;
&lt;!ATTLIST %maxLength;
%facetAttr;
%fixedAttr;
%maxLengthAttrs;&gt;
&lt;!-- This one can be repeated --&gt;
&lt;!ELEMENT %enumeration; %facetModel;&gt;
&lt;!ATTLIST %enumeration;
%facetAttr;
%enumerationAttrs;&gt;
&lt;!ELEMENT %whiteSpace; %facetModel;&gt;
&lt;!ATTLIST %whiteSpace;
%facetAttr;
%fixedAttr;
%whiteSpaceAttrs;&gt;
&lt;!-- This one can be repeated --&gt;
&lt;!ELEMENT %pattern; %facetModel;&gt;
&lt;!ATTLIST %pattern;
%facetAttr;
%patternAttrs;&gt;
&lt;!ELEMENT %assertion; %facetModel;&gt;
&lt;!ATTLIST %assertion;
%facetAttr;
%assertionAttrs;&gt;
&lt;!ELEMENT %explicitTimezone; %facetModel;&gt;
&lt;!ATTLIST %explicitTimezone;
%facetAttr;
%explicitTimezoneAttrs;&gt;
</pre></div></div></div><div class="div1">
<h2><a name="prim.nxsd" id="prim.nxsd" shape="rect"></a>C Illustrative XML representations for the built-in simple type definitions</h2><div class="div2">
<h3><span class="nav"> <a href="#drvd.nxsd" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="sec-prim-nxsd" id="sec-prim-nxsd" shape="rect"></a>C.1 Illustrative XML representations for the built-in primitive type definitions</h3><p>The following, although in the form of a
schema document, does not conform to the rules for schema documents
defined in this specification. It contains explicit XML
representations of the primitive datatypes which need not be declared
in a schema document, since they are automatically included in every
schema, and indeed must not be declared in a schema document, since it
is forbidden to try to derive types with <a href="#anyAtomicType" shape="rect">anyAtomicType</a>
as the base type definition. It is included here as a form of
documentation.
</p><div class="sfsScrap" id="div_not-schema-for-primitives">
<a id="not-schema-for-primitives" name="not-schema-for-primitives" shape="rect"></a>
<div class="sfsHead">The (not a) schema document for primitive built-in type definitions</div>
<div class="sfsBody">
<pre xml:space="preserve">&lt;?xml version='1.0'?&gt;
&lt;!DOCTYPE xs:schema SYSTEM "../namespace/XMLSchema.dtd" [
&lt;!--
keep this schema XML1.0 DTD valid
--&gt;
&lt;!ENTITY % schemaAttrs 'xmlns:hfp CDATA #IMPLIED'&gt;
&lt;!ELEMENT hfp:hasFacet EMPTY&gt;
&lt;!ATTLIST hfp:hasFacet
name NMTOKEN #REQUIRED&gt;
&lt;!ELEMENT hfp:hasProperty EMPTY&gt;
&lt;!ATTLIST hfp:hasProperty
name NMTOKEN #REQUIRED
value CDATA #REQUIRED&gt;
]&gt;
&lt;xs:schema
xmlns:hfp="http://www.w3.org/2001/XMLSchema-hasFacetAndProperty"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
xml:lang="en"
targetNamespace="http://www.w3.org/2001/XMLSchema"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation&gt;
This document contains XML elements which look like
definitions for the primitive datatypes. These definitions are for
information only; the real built-in definitions are magic.
&lt;/xs:documentation&gt;
&lt;xs:documentation&gt;
For each built-in datatype in this schema (both primitive and
derived) can be uniquely addressed via a URI constructed
as follows:
1) the base URI is the URI of the XML Schema namespace
2) the fragment identifier is the name of the datatype
For example, to address the int datatype, the URI is:
http://www.w3.org/2001/XMLSchema#int
Additionally, each facet definition element can be uniquely
addressed via a URI constructed as follows:
1) the base URI is the URI of the XML Schema namespace
2) the fragment identifier is the name of the facet
For example, to address the maxInclusive facet, the URI is:
http://www.w3.org/2001/XMLSchema#maxInclusive
Additionally, each facet usage in a built-in datatype definition
can be uniquely addressed via a URI constructed as follows:
1) the base URI is the URI of the XML Schema namespace
2) the fragment identifier is the name of the datatype, followed
by a period (".") followed by the name of the facet
For example, to address the usage of the maxInclusive facet in
the definition of int, the URI is:
http://www.w3.org/2001/XMLSchema#int.maxInclusive
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:simpleType name="string" id="string"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="length"/&gt;
&lt;hfp:hasFacet name="minLength"/&gt;
&lt;hfp:hasFacet name="maxLength"/&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="false"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#string"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace value="preserve" id="string.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="boolean" id="boolean"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="false"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="finite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#boolean"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="boolean.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="float" id="float"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="partial"/&gt;
&lt;hfp:hasProperty name="bounded" value="true"/&gt;
&lt;hfp:hasProperty name="cardinality" value="finite"/&gt;
&lt;hfp:hasProperty name="numeric" value="true"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#float"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="float.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="double" id="double"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="partial"/&gt;
&lt;hfp:hasProperty name="bounded" value="true"/&gt;
&lt;hfp:hasProperty name="cardinality" value="finite"/&gt;
&lt;hfp:hasProperty name="numeric" value="true"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#double"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="double.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="decimal" id="decimal"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="totalDigits"/&gt;
&lt;hfp:hasFacet name="fractionDigits"/&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="total"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="true"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#decimal"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="decimal.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="duration" id="duration"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="partial"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#duration"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="duration.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="dateTime" id="dateTime"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasFacet name="explicitTimezone"/&gt;
&lt;hfp:hasProperty name="ordered" value="partial"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#dateTime"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="dateTime.whiteSpace"/&gt;
&lt;xs:explicitTimezone value="optional" id="dateTime.explicitTimezone"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="time" id="time"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasFacet name="explicitTimezone"/&gt;
&lt;hfp:hasProperty name="ordered" value="partial"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#time"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="time.whiteSpace"/&gt;
&lt;xs:explicitTimezone value="optional" id="time.explicitTimezone"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="date" id="date"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasFacet name="explicitTimezone"/&gt;
&lt;hfp:hasProperty name="ordered" value="partial"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#date"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="date.whiteSpace"/&gt;
&lt;xs:explicitTimezone value="optional" id="date.explicitTimezone"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="gYearMonth" id="gYearMonth"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasFacet name="explicitTimezone"/&gt;
&lt;hfp:hasProperty name="ordered" value="partial"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gYearMonth"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="gYearMonth.whiteSpace"/&gt;
&lt;xs:explicitTimezone value="optional" id="gYearMonth.explicitTimezone"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="gYear" id="gYear"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasFacet name="explicitTimezone"/&gt;
&lt;hfp:hasProperty name="ordered" value="partial"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gYear"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="gYear.whiteSpace"/&gt;
&lt;xs:explicitTimezone value="optional" id="gYear.explicitTimezone"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="gMonthDay" id="gMonthDay"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasFacet name="explicitTimezone"/&gt;
&lt;hfp:hasProperty name="ordered" value="partial"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gMonthDay"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="gMonthDay.whiteSpace"/&gt;
&lt;xs:explicitTimezone value="optional" id="gMonthDay.explicitTimezone"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="gDay" id="gDay"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasFacet name="explicitTimezone"/&gt;
&lt;hfp:hasProperty name="ordered" value="partial"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gDay"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="gDay.whiteSpace"/&gt;
&lt;xs:explicitTimezone value="optional" id="gDay.explicitTimezone"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="gMonth" id="gMonth"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="maxInclusive"/&gt;
&lt;hfp:hasFacet name="maxExclusive"/&gt;
&lt;hfp:hasFacet name="minInclusive"/&gt;
&lt;hfp:hasFacet name="minExclusive"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasFacet name="explicitTimezone"/&gt;
&lt;hfp:hasProperty name="ordered" value="partial"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#gMonth"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="gMonth.whiteSpace"/&gt;
&lt;xs:explicitTimezone value="optional" id="gMonth.explicitTimezone"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="hexBinary" id="hexBinary"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="length"/&gt;
&lt;hfp:hasFacet name="minLength"/&gt;
&lt;hfp:hasFacet name="maxLength"/&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="false"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#hexBinary"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="hexBinary.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="base64Binary" id="base64Binary"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="length"/&gt;
&lt;hfp:hasFacet name="minLength"/&gt;
&lt;hfp:hasFacet name="maxLength"/&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="false"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#base64Binary"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="base64Binary.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="anyURI" id="anyURI"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="length"/&gt;
&lt;hfp:hasFacet name="minLength"/&gt;
&lt;hfp:hasFacet name="maxLength"/&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="false"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#anyURI"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="anyURI.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="QName" id="QName"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="length"/&gt;
&lt;hfp:hasFacet name="minLength"/&gt;
&lt;hfp:hasFacet name="maxLength"/&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="false"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#QName"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="QName.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="NOTATION" id="NOTATION"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="length"/&gt;
&lt;hfp:hasFacet name="minLength"/&gt;
&lt;hfp:hasFacet name="maxLength"/&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="false"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NOTATION"/&gt;
&lt;xs:documentation&gt;
NOTATION cannot be used directly in a schema; rather a type
must be derived from it by specifying at least one enumeration
facet whose value is the name of a NOTATION declared in the
schema.
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:anyAtomicType"&gt;
&lt;xs:whiteSpace fixed="true" value="collapse" id="NOTATION.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;/xs:schema&gt;
</pre></div></div></div><div class="div2">
<h3><span class="nav"><a href="#sec-prim-nxsd" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="drvd.nxsd" id="drvd.nxsd" shape="rect"></a>C.2 Illustrative XML representations for the built-in ordinary type definitions</h3><p>The following, although in the form of a
schema document, contains XML representations of components already
present in all schemas by definition. It is included here as a form
of documentation.</p><div class="note"><div class="p"><b>Note:</b> These datatypes do not need to be declared in a schema document,
since they are automatically included in every schema.</div></div><div class="issue"><a name="B-1933" id="B-1933" shape="rect"></a><blockquote><b>Issue (B-1933):</b><div class="p">It is an open question whether this and similar XML documents should
be accepted or rejected by software conforming to this specification.
The XML Schema Working Group expects to resolve this question in connection
with its work on issues relating to schema composition.</div><div class="p">In the meantime, some existing schema processors will accept
declarations for them; other existing processors will reject such
declarations as duplicates.</div></blockquote></div><div class="sfsScrap" id="div_schema-for-derived">
<a id="schema-for-derived" name="schema-for-derived" shape="rect"></a>
<div class="sfsHead">Illustrative schema document for derived built-in type definitions</div>
<div class="sfsBody">
<pre xml:space="preserve">&lt;?xml version='1.0'?&gt;
&lt;!DOCTYPE xs:schema SYSTEM "../namespace/XMLSchema.dtd" [
&lt;!--
keep this schema XML1.0 DTD valid
--&gt;
&lt;!ENTITY % schemaAttrs 'xmlns:hfp CDATA #IMPLIED'&gt;
&lt;!ELEMENT hfp:hasFacet EMPTY&gt;
&lt;!ATTLIST hfp:hasFacet
name NMTOKEN #REQUIRED&gt;
&lt;!ELEMENT hfp:hasProperty EMPTY&gt;
&lt;!ATTLIST hfp:hasProperty
name NMTOKEN #REQUIRED
value CDATA #REQUIRED&gt;
]&gt;
&lt;xs:schema
xmlns:hfp="http://www.w3.org/2001/XMLSchema-hasFacetAndProperty"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
xml:lang="en"
targetNamespace="http://www.w3.org/2001/XMLSchema"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation&gt;
This document contains XML representations for the
ordinary non-primitive built-in datatypes
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:simpleType name="normalizedString" id="normalizedString"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#normalizedString"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:string"&gt;
&lt;xs:whiteSpace value="replace" id="normalizedString.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="token" id="token"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#token"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:normalizedString"&gt;
&lt;xs:whiteSpace value="collapse" id="token.whiteSpace"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="language" id="language"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#language"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:token"&gt;
&lt;xs:pattern value="[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*" id="language.pattern"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.ietf.org/rfc/bcp/bcp47.txt"&gt;
pattern specifies the content of section 2.12 of XML 1.0e2
and RFC 3066 (Revised version of RFC 1766). N.B. RFC 3066 is now
obsolete; the grammar of RFC4646 is more restrictive. So strict
conformance to the rules for language codes requires extra checking
beyond validation against this type.
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;/xs:pattern&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="IDREFS" id="IDREFS"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="length"/&gt;
&lt;hfp:hasFacet name="minLength"/&gt;
&lt;hfp:hasFacet name="maxLength"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="false"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#IDREFS"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction&gt;
&lt;xs:simpleType&gt;
&lt;xs:list itemType="xs:IDREF"/&gt;
&lt;/xs:simpleType&gt;
&lt;xs:minLength value="1" id="IDREFS.minLength"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="ENTITIES" id="ENTITIES"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="length"/&gt;
&lt;hfp:hasFacet name="minLength"/&gt;
&lt;hfp:hasFacet name="maxLength"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="false"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#ENTITIES"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction&gt;
&lt;xs:simpleType&gt;
&lt;xs:list itemType="xs:ENTITY"/&gt;
&lt;/xs:simpleType&gt;
&lt;xs:minLength value="1" id="ENTITIES.minLength"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="NMTOKEN" id="NMTOKEN"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NMTOKEN"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:token"&gt;
&lt;xs:pattern value="\c+" id="NMTOKEN.pattern"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/REC-xml#NT-Nmtoken"&gt;
pattern matches production 7 from the XML spec
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;/xs:pattern&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="NMTOKENS" id="NMTOKENS"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasFacet name="length"/&gt;
&lt;hfp:hasFacet name="minLength"/&gt;
&lt;hfp:hasFacet name="maxLength"/&gt;
&lt;hfp:hasFacet name="enumeration"/&gt;
&lt;hfp:hasFacet name="whiteSpace"/&gt;
&lt;hfp:hasFacet name="pattern"/&gt;
&lt;hfp:hasFacet name="assertions"/&gt;
&lt;hfp:hasProperty name="ordered" value="false"/&gt;
&lt;hfp:hasProperty name="bounded" value="false"/&gt;
&lt;hfp:hasProperty name="cardinality" value="countably infinite"/&gt;
&lt;hfp:hasProperty name="numeric" value="false"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NMTOKENS"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction&gt;
&lt;xs:simpleType&gt;
&lt;xs:list itemType="xs:NMTOKEN"/&gt;
&lt;/xs:simpleType&gt;
&lt;xs:minLength value="1" id="NMTOKENS.minLength"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="Name" id="Name"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#Name"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:token"&gt;
&lt;xs:pattern value="\i\c*" id="Name.pattern"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/REC-xml#NT-Name"&gt;
pattern matches production 5 from the XML spec
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;/xs:pattern&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="NCName" id="NCName"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#NCName"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:Name"&gt;
&lt;xs:pattern value="[\i-[:]][\c-[:]]*" id="NCName.pattern"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/REC-xml-names/#NT-NCName"&gt;
pattern matches production 4 from the Namespaces in XML spec
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;/xs:pattern&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="ID" id="ID"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#ID"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:NCName"/&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="IDREF" id="IDREF"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#IDREF"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:NCName"/&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="ENTITY" id="ENTITY"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#ENTITY"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:NCName"/&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="integer" id="integer"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#integer"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:decimal"&gt;
&lt;xs:fractionDigits fixed="true" value="0" id="integer.fractionDigits"/&gt;
&lt;xs:pattern value="[\-+]?[0-9]+" id="integer.pattern"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="nonPositiveInteger" id="nonPositiveInteger"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#nonPositiveInteger"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:integer"&gt;
&lt;xs:maxInclusive value="0" id="nonPositiveInteger.maxInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="negativeInteger" id="negativeInteger"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#negativeInteger"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:nonPositiveInteger"&gt;
&lt;xs:maxInclusive value="-1" id="negativeInteger.maxInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="long" id="long"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasProperty name="bounded" value="true"/&gt;
&lt;hfp:hasProperty name="cardinality" value="finite"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#long"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:integer"&gt;
&lt;xs:minInclusive value="-9223372036854775808" id="long.minInclusive"/&gt;
&lt;xs:maxInclusive value="9223372036854775807" id="long.maxInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="int" id="int"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#int"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:long"&gt;
&lt;xs:minInclusive value="-2147483648" id="int.minInclusive"/&gt;
&lt;xs:maxInclusive value="2147483647" id="int.maxInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="short" id="short"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#short"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:int"&gt;
&lt;xs:minInclusive value="-32768" id="short.minInclusive"/&gt;
&lt;xs:maxInclusive value="32767" id="short.maxInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="byte" id="byte"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#byte"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:short"&gt;
&lt;xs:minInclusive value="-128" id="byte.minInclusive"/&gt;
&lt;xs:maxInclusive value="127" id="byte.maxInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="nonNegativeInteger" id="nonNegativeInteger"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#nonNegativeInteger"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:integer"&gt;
&lt;xs:minInclusive value="0" id="nonNegativeInteger.minInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="unsignedLong" id="unsignedLong"&gt;
&lt;xs:annotation&gt;
&lt;xs:appinfo&gt;
&lt;hfp:hasProperty name="bounded" value="true"/&gt;
&lt;hfp:hasProperty name="cardinality" value="finite"/&gt;
&lt;/xs:appinfo&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedLong"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:nonNegativeInteger"&gt;
&lt;xs:maxInclusive value="18446744073709551615" id="unsignedLong.maxInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="unsignedInt" id="unsignedInt"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedInt"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:unsignedLong"&gt;
&lt;xs:maxInclusive value="4294967295" id="unsignedInt.maxInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="unsignedShort" id="unsignedShort"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedShort"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:unsignedInt"&gt;
&lt;xs:maxInclusive value="65535" id="unsignedShort.maxInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="unsignedByte" id="unsignedByte"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#unsignedByte"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:unsignedShort"&gt;
&lt;xs:maxInclusive value="255" id="unsignedByte.maxInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="positiveInteger" id="positiveInteger"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#positiveInteger"/&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:nonNegativeInteger"&gt;
&lt;xs:minInclusive value="1" id="positiveInteger.minInclusive"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="yearMonthDuration"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#yearMonthDuration"&gt;
This type includes just those durations expressed in years and months.
Since the pattern given excludes days, hours, minutes, and seconds,
the values of this type have a seconds property of zero. They are
totally ordered.
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:duration"&gt;
&lt;xs:pattern id="yearMonthDuration.pattern" value="[^DT]*"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="dayTimeDuration"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#dayTimeDuration"&gt;
This type includes just those durations expressed in days, hours, minutes, and seconds.
The pattern given excludes years and months, so the values of this type
have a months property of zero. They are totally ordered.
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:duration"&gt;
&lt;xs:pattern id="dayTimeDuration.pattern" value="[^YM]*(T.*)?"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;xs:simpleType name="dateTimeStamp" id="dateTimeStamp"&gt;
&lt;xs:annotation&gt;
&lt;xs:documentation source="http://www.w3.org/TR/xmlschema11-2/#dateTimeStamp"&gt;
This datatype includes just those dateTime values Whose explicitTimezone
is present. They are totally ordered.
&lt;/xs:documentation&gt;
&lt;/xs:annotation&gt;
&lt;xs:restriction base="xs:dateTime"&gt;
&lt;xs:explicitTimezone fixed="true"
id="dateTimeStamp.explicitTimezone" value="required"/&gt;
&lt;/xs:restriction&gt;
&lt;/xs:simpleType&gt;
&lt;/xs:schema&gt;</pre></div></div></div></div><div class="div1">
<h2><a name="constructedValueSpaces" id="constructedValueSpaces" shape="rect"></a>D Built-up Value Spaces</h2><p>Some datatypes, such as <a href="#integer" shape="rect">integer</a>, describe well-known mathematically abstract
systems.&#160; Others, such as the date/time datatypes, describe "real-life",
"applied" systems.&#160; Certain
of the systems described by datatypes, both abstract and
applied, have values in their value spaces most easily described as things
having several <em>properties</em>, which in turn have values which are
in some sense "primitive" or are from the value spaces of
simpler datatypes.</p><p>In
this document, the arguments to functions are assumed to be "call by
value" unless explicitly noted to the contrary, meaning that if the argument is modified
during the processing of the algorithm, that modification is <em>not</em> reflected in the
"outside world".&#160; On the other hand, the arguments to procedures are assumed
to be "call by location", meaning that modifications <em>are</em> so reflected,
since that is the only way the processing of the algorithm can have any effect.</p><p>Properties always have values.&#160;
<span class="termdef"><a name="dt-optional" id="dt-optional" title="" shape="rect">[Definition:]&#160;&#160;</a>An <b>optional</b>
property is <em>permitted</em> but not <em>required</em> to have
the distinguished
value <b><i>absent</i></b>.</span></p><p><span class="termdef"><a name="key-null" id="key-null" title="" shape="rect">[Definition:]&#160;&#160;</a>Throughout this
specification, the value <b><b><i>absent</i></b></b> is used
as a distinguished value to indicate that a given instance of a property
"has no value" or "is absent".</span>&#160;
This should not be interpreted as constraining implementations, as for instance
between using a
<b><i>null</i></b>
value for such properties or not representing them at all.</p><div class="block">Those
values that are more primitive, and are used (among other things) herein to
construct object value spaces but which we do not explicitly define are
described here:
<ul><li><div class="p">A
<b>number (without precision)</b> is an ordinary
mathematical number; 1, 1.0, and
1.000000000000 are the same
number.&#160; The decimal
numbers and integers
generally used in the algorithms of
appendix <a href="#ap-funcDefs" shape="rect">Function
Definitions (&#167;E)</a> are
such
ordinary numbers, not carrying precision.</div></li><li><div class="p"><span class="termdef"><a name="dt-specialvalue" id="dt-specialvalue" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>special value</b> is
an object
whose only relevant properties for purposes of this specification are that it
is distinct from, and unequal to, any other values (special or otherwise).</span>&#160;
A few special values in different value spaces (e.g. <b><i>positiveInfinity</i></b>,
<b><i>negativeInfinity</i></b>, and <b><i>notANumber</i></b> in <a href="#float" shape="rect">float</a> and
<a href="#double" shape="rect">double</a>) share names.&#160; Thus, special values
can be distinguished from each other in the
general case by considering both the name and the primitive datatype of the value; in
some
cases, of course, the name alone suffices to identify the value uniquely.</div><div class="note"><a name="b3226move.n1" id="b3226move.n1" shape="rect"></a><div class="p"><b>Note:</b> In the case of <a href="#float" shape="rect">float</a>
and <a href="#double" shape="rect">double</a>, the <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a> are members of the
datatype's <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.&#160;
</div></div></li></ul>
</div><div class="div2">
<h3 class="withToc"><span class="nav"> <a href="#d-t-values" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="sec-numericalValues" id="sec-numericalValues" shape="rect"></a>D.1 Numerical Values</h3><div class="block">The following standard operators are defined here
in case the reader is unsure of their definition:
<ul><li><div class="p"><span class="termdef"><a name="dt-div" id="dt-div" title="" shape="rect">[Definition:]&#160;&#160;</a>If <var>m</var> and <var>n</var> are numbers, then
<var>m</var>&#160;<b>div</b> <var>n</var> is the greatest integer
less than or equal to
<var>m</var>&#160;/&#160;<var>n</var>&#160;.</span></div></li><li><div class="p"><span class="termdef"><a name="dt-mod" id="dt-mod" title="" shape="rect">[Definition:]&#160;&#160;</a>If <var>m</var> and <var>n</var> are numbers, then
<var>m</var> <b>mod</b> <var>n</var> is&#160;
<var>m</var>&#160;&#8722;&#160;<var>n</var>&#160;&#215;&#160;(&#160;<var>m</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;<var>n</var>)&#160;.</span>
</div></li></ul>
</div><div class="note"><div class="p"><b>Note:</b> <var>n</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;1&#160; is
a convenient and short way of
expressing "the greatest integer
less
than or equal to <var>n</var>".</div></div><div class="div3">
<h4><a name="sec-exactmaps" id="sec-exactmaps" shape="rect"></a>D.1.1 Exact Lexical Mappings</h4><div class="defset">
<div class="defset-head">Numerals and Fragments Thereof</div>
<div class="prod">
<a name="nt-digit" id="nt-digit" shape="rect"></a><span class="lhs">[45]
&#160;
<i>digit</i></span>&#160;::= [<code>0-9</code>]</div><div class="prod">
<a name="nt-unsNoDecNuml" id="nt-unsNoDecNuml" shape="rect"></a><span class="lhs">[46]
&#160;
<i>unsignedNoDecimalPtNumeral</i></span>&#160;::= <a href="#nt-digit" shape="rect"><i>digit</i></a>+</div><div class="prod">
<a name="nt-noDecNuml" id="nt-noDecNuml" shape="rect"></a><span class="lhs">[47]
&#160;
<i>noDecimalPtNumeral</i></span>&#160;::= ('<code>+</code>'&#160;|&#160;'<code>-</code>')?&#160;<a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a></div><div class="prod">
<a name="nt-fracFrag" id="nt-fracFrag" shape="rect"></a><span class="lhs">[48]
&#160;
<i>fracFrag</i></span>&#160;::= <a href="#nt-digit" shape="rect"><i>digit</i></a>+</div><div class="prod">
<a name="nt-unsDecNuml" id="nt-unsDecNuml" shape="rect"></a><span class="lhs">[49]
&#160;
<i>unsignedDecimalPtNumeral</i></span>&#160;::= (<a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>&#160;'<code>.</code>'&#160;<a href="#nt-fracFrag" shape="rect"><i>fracFrag</i></a>?)&#160;|&#160;('<code>.</code>'&#160;<a href="#nt-fracFrag" shape="rect"><i>fracFrag</i></a>)</div><div class="prod">
<a name="nt-unsFullDecNuml" id="nt-unsFullDecNuml" shape="rect"></a><span class="lhs">[50]
&#160;
<i>unsignedFullDecimalPtNumeral</i></span>&#160;::= <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>&#160;'<code>.</code>'&#160;<a href="#nt-fracFrag" shape="rect"><i>fracFrag</i></a></div><div class="prod">
<a name="nt-decNuml" id="nt-decNuml" shape="rect"></a><span class="lhs">[51]
&#160;
<i>decimalPtNumeral</i></span>&#160;::= ('<code>+</code>'&#160;|&#160;'<code>-</code>')?&#160;<a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a></div><div class="prod">
<a name="nt-unsSciNuml" id="nt-unsSciNuml" shape="rect"></a><span class="lhs">[52]
&#160;
<i>unsignedScientificNotationNumeral</i></span>&#160;::= (<a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>&#160;|&#160;<a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a>) ('<code>e</code>'&#160;|&#160;'<code>E</code>') <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a></div><div class="prod">
<a name="nt-sciNuml" id="nt-sciNuml" shape="rect"></a><span class="lhs">[53]
&#160;
<i>scientificNotationNumeral</i></span>&#160;::= ('<code>+</code>'&#160;|&#160;'<code>-</code>')?&#160;<a href="#nt-unsSciNuml" shape="rect"><i>unsignedScientificNotationNumeral</i></a></div></div>
<div class="block">
<div class="defset">
<div class="not_aux">
<div class="defset-head">Generic Numeral-to-Number Lexical Mappings</div>
<div class="deftop"><b><a name="summary-f-unsNoDecVal" id="summary-f-unsNoDecVal" href="#f-unsNoDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalMap<span class="arrow">&#183;</span></i></a></b> (<var>N</var>) &#8594; integer</div>
<div class="defindent">Maps an <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a> to its numerical value.</div>
<div class="deftop"><b><a name="summary-f-noDecVal" id="summary-f-noDecVal" href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a></b> (<var>N</var>) &#8594; integer</div>
<div class="defindent">Maps an <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a> to its numerical value.</div>
<div class="deftop"><b><a name="summary-f-unsDecVal" id="summary-f-unsDecVal" href="#f-unsDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtMap<span class="arrow">&#183;</span></i></a></b> (<var>D</var>) &#8594; decimal number</div>
<div class="defindent">Maps an <a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a> to its numerical value.</div>
<div class="deftop"><b><a name="summary-f-decVal" id="summary-f-decVal" href="#f-decVal" shape="rect"><i><span class="arrow">&#183;</span>decimalPtMap<span class="arrow">&#183;</span></i></a></b> (<var>N</var>) &#8594; decimal number</div>
<div class="defindent">Maps a <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a> to its numerical value.</div>
<div class="deftop"><b><a name="summary-f-sciVal" id="summary-f-sciVal" href="#f-sciVal" shape="rect"><i><span class="arrow">&#183;</span>scientificMap<span class="arrow">&#183;</span></i></a></b> (<var>N</var>) &#8594; decimal number</div>
<div class="defindent">Maps a <a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a> to its numerical value.</div>
</div></div>
<div class="defset">
<div class="not_aux">
<div class="defset-head">Generic Number to Numeral Canonical Mappings</div>
<div class="deftop"><b><a name="summary-f-unsNoDecCanFragMap" id="summary-f-unsNoDecCanFragMap" href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>i</var>) &#8594; <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a></div>
<div class="defindent">Maps a nonnegative integer to a <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
<div class="deftop"><b><a name="summary-f-noDecCanMap" id="summary-f-noDecCanMap" href="#f-noDecCanMap" shape="rect"><i><span class="arrow">&#183;</span>noDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>i</var>) &#8594; <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a></div>
<div class="defindent">Maps an integer to a <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
<div class="deftop"><b><a name="summary-f-unsDecCanFragMap" id="summary-f-unsDecCanFragMap" href="#f-unsDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>n</var>) &#8594; <a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a></div>
<div class="defindent">Maps a nonnegative decimal number to a <a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
<div class="deftop"><b><a name="summary-f-decCanFragMap" id="summary-f-decCanFragMap" href="#f-decCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>decimalPtCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>n</var>) &#8594; <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a></div>
<div class="defindent">Maps a decimal number to a <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
<div class="deftop"><b><a name="summary-f-unsSciCanFragMap" id="summary-f-unsSciCanFragMap" href="#f-unsSciCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedScientificCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>n</var>) &#8594; <a href="#nt-unsSciNuml" shape="rect"><i>unsignedScientificNotationNumeral</i></a></div>
<div class="defindent">Maps a nonnegative decimal number to a <a href="#nt-unsSciNuml" shape="rect"><i>unsignedScientificNotationNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
<div class="deftop"><b><a name="summary-f-sciCanFragMap" id="summary-f-sciCanFragMap" href="#f-sciCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>scientificCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>n</var>) &#8594; <a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a></div>
<div class="defindent">Maps a decimal number to a <a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
</div></div>
Some numerical datatypes include some or all of three
non-numerical <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a>:
<b><i>positiveInfinity</i></b>, <b><i>negativeInfinity</i></b>, and <b><i>notANumber</i></b>.&#160; Their lexical spaces
include non-numeral lexical representations for these non-numeric values:
<div class="defset">
<div class="defset-head">Special Non-numerical Lexical Representations Used With Numerical Datatypes</div>
<div class="prod">
<a name="nt-minNumSpecReps" id="nt-minNumSpecReps" shape="rect"></a><span class="lhs">[54]
&#160;
<i>minimalNumericalSpecialRep</i></span>&#160;::= '<code>INF</code>'&#160;|&#160;'<code>-INF</code>'&#160;|&#160;'<code>NaN</code>'</div><div class="prod">
<a name="nt-numSpecReps" id="nt-numSpecReps" shape="rect"></a><span class="lhs">[55]
&#160;
<i>numericalSpecialRep</i></span>&#160;::= '<code>+INF</code>'&#160;|&#160;<a href="#nt-minNumSpecReps" shape="rect"><i>minimalNumericalSpecialRep</i></a></div></div>
<div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping for Non-numerical <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>Special Values<span class="arrow">&#183;</span></a> Used With Numerical Datatypes</div>
<div class="deftop"><b><a name="summary-f-specRepVal" id="summary-f-specRepVal" href="#f-specRepVal" shape="rect"><i><span class="arrow">&#183;</span>specialRepValue<span class="arrow">&#183;</span></i></a></b> (<var>S</var>) &#8594; a <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special value<span class="arrow">&#183;</span></a></div>
<div class="defindent">Maps the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> of <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a> used with some
numerical datatypes to those <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a>.</div>
</div></div>
<div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping for Non-numerical <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>Special Values<span class="arrow">&#183;</span></a> Used with Numerical Datatypes</div>
<div class="deftop"><b><a name="summary-f-specValCanMap" id="summary-f-specValCanMap" href="#f-specValCanMap" shape="rect"><i><span class="arrow">&#183;</span>specialRepCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>c</var>) &#8594; <a href="#nt-numSpecReps" shape="rect"><i>numericalSpecialRep</i></a></div>
<div class="defindent">Maps the <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a> used with some numerical datatypes to their <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representations<span class="arrow">&#183;</span></a>.</div>
</div></div>
</div></div></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#sec-numericalValues" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="d-t-values" id="d-t-values" shape="rect"></a>D.2 Date/time Values</h3><div class="localToc">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;D.2.1 <a href="#theSevenPropertyModel" shape="rect">The Seven-property Model</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;D.2.2 <a href="#rf-lexicalMappings-datetime" shape="rect">Lexical Mappings</a><br clear="none" />
</div><p>There are several different primitive but
related datatypes defined in the specification which pertain to
various combinations of dates and times, and parts thereof.&#160; They
all use related value-space models, which are described in detail in
this section.&#160; It is not difficult for a casual reader of the
descriptions of the individual datatypes elsewhere in this
specification to misunderstand some of the details of just what the
datatypes are intended to represent, so more detail is presented here
in this section.</p><p>All of the value spaces for dates and times
described here represent moments or periods of time in Universal
Coordinated Time (UTC).&#160;
<span class="termdef"><a name="dt-utc" id="dt-utc" title="" shape="rect">[Definition:]&#160;&#160;</a><b>Universal
Coordinated Time</b> (<b>UTC</b>)
is an adaptation of TAI which closely approximates UT1 by adding
<a href="#dt-leapsec" class="termref" shape="rect"><span class="arrow">&#183;</span>leap-seconds<span class="arrow">&#183;</span></a> to selected
<a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a> days.</span></p><p><span class="termdef"><a name="dt-leapsec" id="dt-leapsec" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>leap-second</b> is an additional second added
to the last day of December, June, October, or March,
when such an adjustment is deemed necessary by the
International Earth Rotation and Reference Systems Service
in order to keep <a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a> within 0.9 seconds
of observed astronomical time.&#160; When leap seconds are
introduced, the last minute in the day has more than
sixty seconds.&#160;
In theory leap seconds can also be removed from a
day, but this has not yet occurred.
(See
<a href="#IERS" shape="rect">[International Earth Rotation Service (IERS)]</a>,
<a href="#itu-r-460-6" shape="rect">[ITU-R TF.460-6]</a>.)
Leap seconds are
<em>not</em> supported by the types defined
here.</span></p><p>Because
the <a href="#dateTime" shape="rect">dateTime</a> type and
other date- and time-related types defined in this specification do
not support leap seconds, there are portions of the <a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a> timeline which cannot be represented by values of these
types. Users whose applications require that leap seconds be
represented and that date/time arithmetic take historically
occurring leap seconds into account will wish to make
appropriate adjustments at the application level, or to use
other types.</p><div class="div3">
<h4><a name="theSevenPropertyModel" id="theSevenPropertyModel" shape="rect"></a>D.2.1 The Seven-property Model</h4><p>There are two distinct ways to model moments in time:&#160; either
by tracking their year, month, day, hour, minute and second (with
fractional seconds as needed), or by tracking
their time (measured generally in seconds or
days) from some starting moment.&#160; Each has
its advantages.&#160; The two are isomorphic.&#160; For
definiteness, we choose to model the first
using five integer and one decimal number properties.&#160; We superimpose
the second by providing one decimal number-valued
function which gives the corresponding count of
seconds from zero (the "time on the time line").</p><div class="block">There is also a seventh <a href="#integer" shape="rect">integer</a> property which
specifies the time zone offset
as the number of minutes of offset from UTC.&#160; Values for the
six primary properties are always stored in
their
"local" values (the values shown in the lexical
representations), rather than converted to
<a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a>.
<div class="defset">
<div class="defset-head">Properties of
<a name="dt-dt-7PropMod" id="dt-dt-7PropMod" shape="rect">Date/time
Seven-property Models</a></div>
<div class="deftop">
<b><a name="vp-dt-year" id="vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a></b></div>
<div class="defindent">an integer</div>
<div class="deftop">
<b><a name="vp-dt-month" id="vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a></b></div>
<div class="defindent">an integer between 1 and 12 inclusive</div>
<div class="deftop">
<b><a name="vp-dt-day" id="vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a></b></div>
<div class="defindent">an integer between 1 and
31 inclusive,
possibly
restricted further depending on
<a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a> and <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a></div>
<div class="deftop">
<b><a name="vp-dt-hour" id="vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a></b></div>
<div class="defindent">an integer between 0 and 23 inclusive</div>
<div class="deftop">
<b><a name="vp-dt-minute" id="vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a></b></div>
<div class="defindent">an integer between 0 and 59 inclusive</div>
<div class="deftop">
<b><a name="vp-dt-second" id="vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a></b></div>
<div class="defindent">a decimal number greater than or equal
to
0 and less
than 60.</div>
<div class="deftop">
<b><a name="vp-dt-timezone" id="vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a></b></div>
<div class="defindent">an <a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a> integer between &#8722;840
and 840 inclusive</div>
</div>
</div><p>Non-negative values of the properties map
to the years, months, days of month, etc. of the Gregorian
calendar in the obvious way.
Values less than 1582 in the
<a href="#vp-dt-year" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> property represent years in the
"proleptic Gregorian calendar".
A value of zero in the <a href="#vp-dt-year" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> property
represents the year 1 BCE;
a value of &#8722;1 represents the year 2 BCE, &#8722;2 is 3 BCE,
etc.</p><div class="note"><div class="p"><b>Note:</b> In version 1.0 of this specification, the
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> property was not permitted to have the value
zero. The year before the year 1 in the
proleptic Gregorian calendar, traditionally referred to as
1 BC or as
1 BCE, was represented by a
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> value of &#8722;1, 2 BCE by &#8722;2, and so
forth.
Of course, many, perhaps most,
references to 1 BCE (or 1 BC) actually refer not
to a year in the proleptic Gregorian calendar but to a year in the
Julian or "old style" calendar; the two correspond
approximately but not exactly to each other.
</div><div class="p">In this version of this specification,
two changes are made in order to agree with existing usage.
First, <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> is permitted to have the value zero.
Second, the interpretation of
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> values is changed accordingly:
a <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> value of zero represents 1 BCE, &#8722;1
represents 2 BCE, etc. This representation simplifies interval
arithmetic and leap-year calculation for dates before the common
era (which may be why astronomers
and others interested in such calculations with the proleptic
Gregorian calendar have adopted it), and is consistent with the
current edition of <a href="#ISO8601" shape="rect">[ISO 8601]</a>.
</div><div class="p">
Note that 1 BCE, 5 BCE, and so on (years 0000, &#8722;0004, etc. in the
lexical representation defined here) are leap years in the proleptic
Gregorian calendar used for the date/time datatypes defined here.
Version 1.0 of this specification was unclear about the treatment of
leap years before the common era.
If existing
schemas or data specify dates of 29 February for any years before the
common era, then some values giving
a date of 29 February which were valid under a plausible
interpretation of XSD 1.0 will be invalid under this specification,
and some which were invalid will be valid. With that possible
exception, schemas and data valid
under the old interpretation remain valid under the new.
</div></div><p>The model just described is called herein the
"seven-property" model for date/time
datatypes.&#160; It is used "as is"
for <a href="#dateTime" shape="rect">dateTime</a>; all other date/time
datatypes except <a href="#duration" shape="rect">duration</a> use the
same model except that some of the six primary
properties are <em>required</em> to have the
value <b><i>absent</i></b>, instead of being required
to have a numerical value.&#160; (An
<em><a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a></em>
property, like <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>,
is always <em>permitted</em>
to have the value <b><i>absent</i></b>.)</p><p><a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> values are limited to 14 hours,
which is 840 (=&#160;60&#160;&#215;&#160;14) minutes.</p><div class="note"><div class="p"><b>Note:</b> Leap-seconds are not permitted</div></div><p>Readers
interested in when leap-seconds have been introduced should
consult <a href="#USNavy_leaps" shape="rect">[USNO Historical List]</a>, which includes a list
of times when the difference between TAI and
<a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a> has changed.&#160;
Because
the simple types defined here do not support leap seconds, they cannot be used
to represent the final second, in <a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a>,
of any of the days containing
one.&#160; If it is important, at the application level,
to track the occurrence of leap seconds, then users will need to make
special arrangements for special handling of them and
of time intervals crossing them.
</p><p>While calculating, property values from the
<a href="#dateTime" shape="rect">dateTime</a> 1972-12-31T00:00:00 are used to fill in
for those that are <b><i>absent</i></b>, except
that if <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> is <b><i>absent</i></b>
but <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a> is not, the largest permitted
day for that month is used.</p><div class="block">
<div class="defset">
<div class="not_aux">
<div class="defset-head">Time on Timeline for Date/time Seven-property
Model Datatypes</div>
<div class="deftop"><b><a name="summary-vp-dt-timeOnTimeline" id="summary-vp-dt-timeOnTimeline" href="#vp-dt-timeOnTimeline" shape="rect"><i><span class="arrow">&#183;</span>timeOnTimeline<span class="arrow">&#183;</span></i></a></b> (<var>dt</var>) &#8594; decimal number</div>
<div class="defindent">Maps a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value to the decimal number
representing its position on the "time line".</div>
</div></div>
Values from any one date/time datatype using the seven-component
model (all except <a href="#duration" shape="rect">duration</a>)
are ordered the same as their <a href="#vp-dt-timeOnTimeline" shape="rect"><i><span class="arrow">&#183;</span>timeOnTimeline<span class="arrow">&#183;</span></i></a> values,
except that if one value's <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
is <b><i>absent</i></b> and the other's is not, and using maximum and minimum
<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
values for the one whose <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
is actually <b><i>absent</i></b>
changes the resulting (strict)
inequality, the original two values are incomparable.</div></div><div class="div3">
<h4><a name="rf-lexicalMappings-datetime" id="rf-lexicalMappings-datetime" shape="rect"></a>D.2.2 Lexical Mappings</h4><div class="block"><span class="termdef"><a name="dt-dt-frag" id="dt-dt-frag" title="" shape="rect">[Definition:]&#160;&#160;</a>Each
lexical representation is made up
of certain <b>date/time fragments</b>, each of which
corresponds to a particular property of the datatype
value.</span>&#160; They are defined by
the following productions.
<div class="defset">
<div class="defset-head">Date/time Lexical Representation Fragments</div>
<div class="prod">
<a name="nt-yrFrag" id="nt-yrFrag" shape="rect"></a><span class="lhs">[56]
&#160;
<i>yearFrag</i></span>&#160;::= '<code>-</code>'?
(([<code>1-9</code>]&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a>&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a>&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a>+))&#160;|
('<code>0</code>'&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a>&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a>&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a>))</div><div class="prod">
<a name="nt-moFrag" id="nt-moFrag" shape="rect"></a><span class="lhs">[57]
&#160;
<i>monthFrag</i></span>&#160;::= ('<code>0</code>'&#160;[<code>1-9</code>])&#160;|
('<code>1</code>'&#160;[<code>0-2</code>])</div><div class="prod">
<a name="nt-daFrag" id="nt-daFrag" shape="rect"></a><span class="lhs">[58]
&#160;
<i>dayFrag</i></span>&#160;::= ('<code>0</code>'&#160;[<code>1-9</code>])&#160;|&#160;([<code>12</code>]&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a>)&#160;|
('<code>3</code>'&#160;[<code>01</code>])</div><div class="prod">
<a name="nt-hrFrag" id="nt-hrFrag" shape="rect"></a><span class="lhs">[59]
&#160;
<i>hourFrag</i></span>&#160;::= ([<code>01</code>]&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a>)&#160;|
('<code>2</code>'&#160;[<code>0-3</code>])</div><div class="prod">
<a name="nt-miFrag" id="nt-miFrag" shape="rect"></a><span class="lhs">[60]
&#160;
<i>minuteFrag</i></span>&#160;::= [<code>0-5</code>]&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a></div><div class="prod">
<a name="nt-seFrag" id="nt-seFrag" shape="rect"></a><span class="lhs">[61]
&#160;
<i>secondFrag</i></span>&#160;::= ([<code>0-5</code>]&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a>) ('<code>.</code>'&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a>+)?</div><div class="prod">
<a name="nt-eodFrag" id="nt-eodFrag" shape="rect"></a><span class="lhs">[62]
&#160;
<i>endOfDayFrag</i></span>&#160;::= '<code>24:00:00</code>'&#160;('<code>.</code>'&#160;'<code>0</code>'+)?</div><div class="prod">
<a name="nt-tzFrag" id="nt-tzFrag" shape="rect"></a><span class="lhs">[63]
&#160;
<i>timezoneFrag</i></span>&#160;::= '<code>Z</code>'
|&#160;('<code>+</code>'&#160;|&#160;'<code>-</code>')&#160;(('<code>0</code>'&#160;<a href="#nt-digit" shape="rect"><i>digit</i></a>&#160;|&#160;'<code>1</code>'&#160;[<code>0-3</code>])&#160;'<code>:</code>'&#160;<a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a> | '<code>14:00</code>')</div></div>
</div><div class="block">Each fragment other than <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a> defines a subset of
the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <a href="#decimal" shape="rect">decimal</a>;
the corresponding
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> is the <a href="#decimal" shape="rect">decimal</a>
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> restricted to that
subset.&#160; These fragment <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> are combined
separately for each date/time datatype (other than <a href="#duration" shape="rect">duration</a>) to make up <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>the complete lexical mapping<span class="arrow">&#183;</span></a> for
that datatype.&#160; The <a href="#f-dt-yrMap" shape="rect"><i><span class="arrow">&#183;</span>yearFragValue<span class="arrow">&#183;</span></i></a> mapping is used to
obtain the value of the <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> property, the <a href="#f-dt-moMap" shape="rect"><i><span class="arrow">&#183;</span>monthFragValue<span class="arrow">&#183;</span></i></a> mapping is used to obtain the value of the <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a> property, etc.&#160; Each datatype which specifies
some properties to be mandatorily <b><i>absent</i></b> also does not permit
the corresponding lexical fragments in its lexical representations.
<div class="defset">
<div class="not_aux">
<div class="defset-head">Partial Date/time Lexical Mappings</div>
<div class="deftop"><b><a name="summary-f-dt-yrMap" id="summary-f-dt-yrMap" href="#f-dt-yrMap" shape="rect"><i><span class="arrow">&#183;</span>yearFragValue<span class="arrow">&#183;</span></i></a></b> (<var>YR</var>) &#8594; integer</div>
<div class="defindent">Maps a <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
<div class="deftop"><b><a name="summary-f-dt-moMap" id="summary-f-dt-moMap" href="#f-dt-moMap" shape="rect"><i><span class="arrow">&#183;</span>monthFragValue<span class="arrow">&#183;</span></i></a></b> (<var>MO</var>) &#8594; integer</div>
<div class="defindent">Maps a <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
<div class="deftop"><b><a name="summary-f-dt-daMap" id="summary-f-dt-daMap" href="#f-dt-daMap" shape="rect"><i><span class="arrow">&#183;</span>dayFragValue<span class="arrow">&#183;</span></i></a></b> (<var>DA</var>) &#8594; integer</div>
<div class="defindent">Maps a <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
<div class="deftop"><b><a name="summary-f-dt-hrMap" id="summary-f-dt-hrMap" href="#f-dt-hrMap" shape="rect"><i><span class="arrow">&#183;</span>hourFragValue<span class="arrow">&#183;</span></i></a></b> (<var>HR</var>) &#8594; integer</div>
<div class="defindent">Maps a <a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
<div class="deftop"><b><a name="summary-f-dt-miMap" id="summary-f-dt-miMap" href="#f-dt-miMap" shape="rect"><i><span class="arrow">&#183;</span>minuteFragValue<span class="arrow">&#183;</span></i></a></b> (<var>MI</var>) &#8594; integer</div>
<div class="defindent">Maps a <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
<div class="deftop"><b><a name="summary-f-dt-seMap" id="summary-f-dt-seMap" href="#f-dt-seMap" shape="rect"><i><span class="arrow">&#183;</span>secondFragValue<span class="arrow">&#183;</span></i></a></b> (<var>SE</var>) &#8594; decimal number</div>
<div class="defindent">Maps a <a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto a decimal number, presumably the <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
<div class="deftop"><b><a name="summary-f-dt-tzMap" id="summary-f-dt-tzMap" href="#f-dt-tzMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneFragValue<span class="arrow">&#183;</span></i></a></b> (<var>TZ</var>) &#8594; integer</div>
<div class="defindent">Maps a <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
</div></div>
</div><div class="note"><div class="p"><b>Note:</b>
The redundancy between
'<code>Z</code>', '<code>+00:00</code>', and
'<code>-00:00</code>', and the possibility of trailing fractional
'<code>0</code>' digits for <a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>, are the only
redundancies preventing these mappings from being one-to-one. There
is no <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> for <a href="#nt-eodFrag" shape="rect"><i>endOfDayFrag</i></a>; it is handled
specially by the relevant <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a>.&#160; See, e.g., <a href="#vp-dateTimeLexRep" shape="rect"><i><span class="arrow">&#183;</span>dateTimeLexicalMap<span class="arrow">&#183;</span></i></a>.
</div></div><div class="block">The following fragment <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical
mappings<span class="arrow">&#183;</span></a> for each value-object
property are combined as appropriate to make the
<a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a>
for each date/time datatype (other
than <a href="#duration" shape="rect">duration</a>):
<div class="defset">
<div class="not_aux">
<div class="defset-head">Partial Date/time Canonical Mappings</div>
<div class="deftop"><b><a name="summary-f-yrCanFragMap" id="summary-f-yrCanFragMap" href="#f-yrCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>yearCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>y</var>) &#8594; <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a></div>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
<div class="deftop"><b><a name="summary-f-moCanFragMap" id="summary-f-moCanFragMap" href="#f-moCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>monthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>m</var>) &#8594; <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a></div>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
<div class="deftop"><b><a name="summary-f-daCanFragMap" id="summary-f-daCanFragMap" href="#f-daCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>dayCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>d</var>) &#8594; <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a></div>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
<div class="deftop"><b><a name="summary-f-hrCanFragMap" id="summary-f-hrCanFragMap" href="#f-hrCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>hourCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>h</var>) &#8594; <a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a></div>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
<div class="deftop"><b><a name="summary-f-miCanFragMap" id="summary-f-miCanFragMap" href="#f-miCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>minuteCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>m</var>) &#8594; <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a></div>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
<div class="deftop"><b><a name="summary-f-seCanFragMap" id="summary-f-seCanFragMap" href="#f-seCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>secondCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>s</var>) &#8594; <a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a></div>
<div class="defindent">Maps a decimal number, presumably the <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
<div class="deftop"><b><a name="summary-f-tzCanFragMap" id="summary-f-tzCanFragMap" href="#f-tzCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>t</var>) &#8594; <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a></div>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div></div>
</div></div></div></div><div class="div1">
<h2><a name="ap-funcDefs" id="ap-funcDefs" shape="rect"></a>E Function
Definitions</h2><p>The more important functions and
procedures defined here are summarized in the
text&#160; When there is a text summary, the name of the function in each is a
"hot-link" to the same name in the other.&#160; All other links
to these functions link to the complete definition in this section.</p><div class="div2">
<h3><span class="nav"> <a href="#sec-duration-functions" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="sec-generic-number-functions" id="sec-generic-number-functions" shape="rect"></a>E.1 Generic Number-related Functions</h3><p>The following functions are used with various numeric and date/time datatypes.
</p><div class="defset">
<div class="aux">
<div class="defset-head">Auxiliary Functions for Operating on Numeral Fragments</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-digitVal" id="f-digitVal" shape="rect"><i><span class="arrow">&#183;</span>digitValue<span class="arrow">&#183;</span></i></a></b> (<var>d</var>) &#8594; integer
<div class="defindent">Maps each digit to its numerical value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>d</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-digit" shape="rect"><i>digit</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative integer less than ten</div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p">0&#160;&#160; when&#160; <var>d</var>&#160;=&#160;'<code>0</code>'&#160;,</div></li><li><div class="p">1&#160;&#160; when&#160; <var>d</var>&#160;=&#160;'<code>1</code>'&#160;,</div></li><li><div class="p">2&#160;&#160; when&#160; <var>d</var>&#160;=&#160;'<code>2</code>'&#160;,</div></li><li><div class="p"><em>etc.</em></div></li></ul>
</div>
<div class="deftop"><b><a name="f-digitSeqVal" id="f-digitSeqVal" shape="rect"><i><span class="arrow">&#183;</span>digitSequenceValue<span class="arrow">&#183;</span></i></a></b> (<var>S</var>) &#8594; integer
<div class="defindent">Maps a sequence of digits to the position-weighted sum of the terms numerical values.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>S</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a finite sequence of
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>, each term matching <a href="#nt-digit" shape="rect"><i>digit</i></a>.</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative integer</div>
<b>Algorithm:</b>
<div class="defindent">Return the sum of
<a href="#f-digitVal" shape="rect"><i><span class="arrow">&#183;</span>digitValue<span class="arrow">&#183;</span></i></a>(<var>S</var><sub><var>i</var></sub>)&#160;&#215;&#160;10<sup>length(<var>S</var>)&#8722;<var>i</var></sup>&#160;
where <var>i</var> runs over the domain of <var>S</var>.
</div>
<div class="deftop"><b><a name="f-fracDigitSeqVal" id="f-fracDigitSeqVal" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitSequenceValue<span class="arrow">&#183;</span></i></a></b> (<var>S</var>) &#8594; integer
<div class="defindent">Maps a sequence of digits to the position-weighted sum of the terms numerical values, weighted appropriately for fractional digits.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>S</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a finite sequence of
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>, each term matching <a href="#nt-digit" shape="rect"><i>digit</i></a>.</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative integer</div>
<b>Algorithm:</b>
<div class="defindent">Return the sum of
<a href="#f-digitVal" shape="rect"><i><span class="arrow">&#183;</span>digitValue<span class="arrow">&#183;</span></i></a>(<var>S</var><sub><var>i</var></sub>)&#160;&#8722;&#160;10<sup>&#8722;<var>i</var></sup>&#160;
where <var>i</var> runs over the domain of <var>S</var>.
</div>
<div class="deftop"><b><a name="f-fracFragVal" id="f-fracFragVal" shape="rect"><i><span class="arrow">&#183;</span>fractionFragValue<span class="arrow">&#183;</span></i></a></b> (<var>N</var>) &#8594; decimal number
<div class="defindent">Maps a <a href="#nt-fracFrag" shape="rect"><i>fracFrag</i></a> to the appropriate fractional decimal number.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>N</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-fracFrag" shape="rect"><i>fracFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative decimal number</div>
<b>Algorithm:</b>
<div class="defindent"><var>N</var> is necessarily the left-to-right concatenation of a finite sequence <var>S</var> of
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>, each term matching <a href="#nt-digit" shape="rect"><i>digit</i></a>.</div>
<div class="defindent">Return <a href="#f-fracDigitSeqVal" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitSequenceValue<span class="arrow">&#183;</span></i></a>(<var>S</var>).</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Generic Numeral-to-Number Lexical Mappings</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-unsNoDecVal" id="f-unsNoDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalMap<span class="arrow">&#183;</span></i></a></b> (<var>N</var>) &#8594; integer
<div class="defindent">Maps an <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a> to its numerical value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>N</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative integer</div>
<b>Algorithm:</b>
<div class="defindent"><var>N</var> is the left-to-right concatenation of a finite sequence <var>S</var> of
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>, each term matching <a href="#nt-digit" shape="rect"><i>digit</i></a>.</div>
<div class="defindent">Return <a href="#f-digitSeqVal" shape="rect"><i><span class="arrow">&#183;</span>digitSequenceValue<span class="arrow">&#183;</span></i></a>(<var>S</var>).</div>
<div class="deftop"><b><a name="f-noDecVal" id="f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a></b> (<var>N</var>) &#8594; integer
<div class="defindent">Maps an <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a> to its numerical value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>N</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">an integer</div>
<b>Algorithm:</b>
<div class="defindent"><var>N</var> necessarily consists of an optional sign('<code>+</code>' or '<code>-</code>') and then
a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> <var>U</var> that matches <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>.</div>
<div class="defindent">Return
<ul><li><div class="p">&#8722;1&#160;&#215;&#160;<a href="#f-unsNoDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalMap<span class="arrow">&#183;</span></i></a>(<var>U</var>)&#160;&#160; when '<code>-</code>' is present, and</div></li><li><div class="p"><a href="#f-unsNoDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalMap<span class="arrow">&#183;</span></i></a>(<var>U</var>)&#160;&#160; otherwise.</div></li></ul></div>
<div class="deftop"><b><a name="f-unsDecVal" id="f-unsDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtMap<span class="arrow">&#183;</span></i></a></b> (<var>D</var>) &#8594; decimal number
<div class="defindent">Maps an <a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a> to its numerical value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>D</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative decimal number</div>
<b>Algorithm:</b>
<div class="defindent"><var>D</var> necessarily consists of an optional <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> <var>N</var> matching <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>,
a decimal point, and then an optional <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> <var>F</var> matching <a href="#nt-fracFrag" shape="rect"><i>fracFrag</i></a>.</div>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-unsNoDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalMap<span class="arrow">&#183;</span></i></a>(<var>N</var>)&#160;&#160; when <var>F</var> is not present,</div></li><li><div class="p"><a href="#f-fracFragVal" shape="rect"><i><span class="arrow">&#183;</span>fractionFragValue<span class="arrow">&#183;</span></i></a>(<var>F</var>)&#160;&#160; when <var>N</var> is not present, and</div></li><li><div class="p"><a href="#f-unsNoDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalMap<span class="arrow">&#183;</span></i></a>(<var>N</var>)&#160;+&#160;<a href="#f-fracFragVal" shape="rect"><i><span class="arrow">&#183;</span>fractionFragValue<span class="arrow">&#183;</span></i></a>(<var>F</var>)&#160;&#160;
otherwise.</div></li></ul></div>
<div class="deftop"><b><a name="f-decVal" id="f-decVal" shape="rect"><i><span class="arrow">&#183;</span>decimalPtMap<span class="arrow">&#183;</span></i></a></b> (<var>N</var>) &#8594; decimal number
<div class="defindent">Maps a <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a> to its numerical value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>N</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a decimal number</div>
<b>Algorithm:</b>
<div class="defindent"><var>N</var> necessarily consists of an optional sign('<code>+</code>' or '<code>-</code>') and then
an instance <var>U</var> of <a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a>.</div>
<div class="defindent">
Return
<ul><li><div class="p">&#8722;<a href="#f-unsDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtMap<span class="arrow">&#183;</span></i></a>(<var>U</var>)&#160;&#160; when '<code>-</code>' is present, and</div></li><li><div class="p"><a href="#f-unsDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtMap<span class="arrow">&#183;</span></i></a>(<var>U</var>)&#160;&#160; otherwise.</div></li></ul></div>
<div class="deftop"><b><a name="f-sciVal" id="f-sciVal" shape="rect"><i><span class="arrow">&#183;</span>scientificMap<span class="arrow">&#183;</span></i></a></b> (<var>N</var>) &#8594; decimal number
<div class="defindent">Maps a <a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a> to its numerical value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>N</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a decimal number</div>
<b>Algorithm:</b>
<div class="defindent"><var>N</var> necessarily consists of an instance <var>C</var> of either <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a> or
<a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a>, either an '<code>e</code>' or an '<code>E</code>', and then an instance
<var>E</var> of <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a>.</div>
<div class="defindent">Return
<ul><li><div class="p">
<a href="#f-decVal" shape="rect"><i><span class="arrow">&#183;</span>decimalPtMap<span class="arrow">&#183;</span></i></a>(<var>C</var>)&#160;&#215;&#160;10&#160;^&#160;<a href="#f-unsDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtMap<span class="arrow">&#183;</span></i></a>(<var>E</var>)&#160;&#160;
when a '<code>.</code>' is present in <var>N</var>, and</div></li><li><div class="p">
<a href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a>(<var>C</var>)&#160;&#215;&#160;10&#160;^&#160;<a href="#f-unsDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtMap<span class="arrow">&#183;</span></i></a>(<var>E</var>)&#160;&#160;
otherwise.</div></li></ul></div>
</div></div><div class="defset">
<div class="aux">
<div class="defset-head">Auxiliary Functions for Producing Numeral Fragments</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-digit" id="f-digit" shape="rect"><i><span class="arrow">&#183;</span>digit<span class="arrow">&#183;</span></i></a></b> (<var>i</var>) &#8594; <a href="#nt-digit" shape="rect"><i>digit</i></a>
<div class="defindent">Maps each integer between 0 and 9 to the corresponding <a href="#nt-digit" shape="rect"><i>digit</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>i</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">between 0 and 9 inclusive</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-digit" shape="rect"><i>digit</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return<ul><li><div class="p">'<code>0</code>'&#160;&#160; when&#160; <var>i</var>&#160;=&#160;0&#160;,</div></li><li><div class="p">'<code>1</code>'&#160;&#160; when&#160; <var>i</var>&#160;=&#160;1&#160;,</div></li><li><div class="p">'<code>2</code>'&#160;&#160; when&#160; <var>i</var>&#160;=&#160;2&#160;,</div></li><li><div class="p">etc.</div></li></ul></div>
<div class="deftop"><b><a name="f-digitRemSeq" id="f-digitRemSeq" shape="rect"><i><span class="arrow">&#183;</span>digitRemainderSeq<span class="arrow">&#183;</span></i></a></b> (<var>i</var>) &#8594; sequence of integers
<div class="defindent">Maps each nonnegative integer to a sequence of integers used by <a href="#f-digitSeq" shape="rect"><i><span class="arrow">&#183;</span>digitSeq<span class="arrow">&#183;</span></i></a> to ultimately create an <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>i</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">sequence of nonnegative integers</div>
<b>Algorithm:</b>
<div class="defindent">Return that sequence <var>s</var> for which
<ul><li><div class="p"><var>s</var><sub>0</sub>&#160;=&#160;<var>i</var>&#160; and</div></li><li><div class="p"><var>s</var><sub><var>j</var>+1</sub>&#160;=&#160;<var>s</var><sub><var>j</var></sub>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;10&#160;.</div></li></ul>
</div>
<div class="deftop"><b><a name="f-digitSeq" id="f-digitSeq" shape="rect"><i><span class="arrow">&#183;</span>digitSeq<span class="arrow">&#183;</span></i></a></b> (<var>i</var>) &#8594; sequence of integers
<div class="defindent">Maps each nonnegative integer to a sequence of integers used by <a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a> to create an <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>i</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">sequence of integers where each term is between 0 and 9 inclusive</div>
<b>Algorithm:</b>
<div class="defindent">Return that sequence <var>s</var> for which&#160;
<var>s</var><sub><var>j</var></sub>&#160;=<a href="#f-digitRemSeq" shape="rect"><i><span class="arrow">&#183;</span>digitRemainderSeq<span class="arrow">&#183;</span></i></a>(<var>i</var>)<sub><var>j</var></sub>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;10&#160;.
</div>
<div class="deftop"><b><a name="f-lastSigDigit" id="f-lastSigDigit" shape="rect"><i><span class="arrow">&#183;</span>lastSignificantDigit<span class="arrow">&#183;</span></i></a></b> (<var>s</var>) &#8594; integer
<div class="defindent">Maps a sequence of nonnegative integers to the index of the first zero term.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>s</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a sequence of nonnegative integers</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative integer</div>
<b>Algorithm:</b>
<div class="defindent">Return the smallest nonnegative integer <var>j</var> such that
<var>s</var>(<var>i</var>)<sub><var>j</var>+1</sub> is 0.
</div>
<div class="deftop"><b><a name="f-fracDigitRemSeq" id="f-fracDigitRemSeq" shape="rect"><i><span class="arrow">&#183;</span>FractionDigitRemainderSeq<span class="arrow">&#183;</span></i></a></b> (<var>f</var>) &#8594; sequence of decimal numbers
<div class="defindent">Maps each nonnegative decimal number less than 1 to a sequence of decimal numbers used by <a href="#f-fracDigitSeq" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitSeq<span class="arrow">&#183;</span></i></a> to ultimately create an <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>f</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">nonnegative and less than 1</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a sequence of nonnegative decimal numbers</div>
<b>Algorithm:</b>
<div class="defindent">Return that sequence <var>s</var> for which
<ul><li><div class="p"><var>s</var><sub>0</sub>&#160;=&#160;<var>f</var>&#160;&#8722;&#160;10&#160;, and</div></li><li><div class="p"><var>s</var><sub><var>j</var>+1</sub>&#160;=&#160;(<var>s</var><sub><var>j</var></sub>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;1)&#160;&#8722;&#160;10&#160;.</div></li></ul>
</div>
<div class="deftop"><b><a name="f-fracDigitSeq" id="f-fracDigitSeq" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitSeq<span class="arrow">&#183;</span></i></a></b> (<var>f</var>) &#8594; sequence of integers
<div class="defindent">Maps each nonnegative decimal number less than 1 to a sequence of integers used by <a href="#f-fracDigitsMap" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitsCanonicalFragmentMap<span class="arrow">&#183;</span></i></a> to ultimately create an <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>f</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">nonnegative and less than 1</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a sequence of integer;s where each term is between 0 and 9 inclusive</div>
<b>Algorithm:</b>
<div class="defindent">Return that sequence <var>s</var> for which&#160;
<var>s</var><sub><var>j</var></sub>&#160;=&#160;<a href="#f-fracDigitRemSeq" shape="rect"><i><span class="arrow">&#183;</span>FractionDigitRemainderSeq<span class="arrow">&#183;</span></i></a>(<var>f</var>)<sub><var>j</var></sub>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;1&#160;.
</div>
<div class="deftop"><b><a name="f-fracDigitsMap" id="f-fracDigitsMap" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitsCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>f</var>) &#8594; <a href="#nt-fracFrag" shape="rect"><i>fracFrag</i></a>
<div class="defindent">Maps each nonnegative decimal number less than 1 to a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> used by <a href="#f-unsDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a> to create an <a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>f</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">nonnegative and less than 1</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-fracFrag" shape="rect"><i>fracFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return&#160;
<a href="#f-digit" shape="rect"><i><span class="arrow">&#183;</span>digit<span class="arrow">&#183;</span></i></a>(<a href="#f-fracDigitSeq" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitSeq<span class="arrow">&#183;</span></i></a>(<var>f</var>)<sub>0</sub>)&#160;&amp; .&#160;.&#160;. &amp;
<a href="#f-digit" shape="rect"><i><span class="arrow">&#183;</span>digit<span class="arrow">&#183;</span></i></a>(<a href="#f-fracDigitSeq" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitSeq<span class="arrow">&#183;</span></i></a>(<var>f</var>)<sub><a href="#f-lastSigDigit" shape="rect"><i><span class="arrow">&#183;</span>lastSignificantDigit<span class="arrow">&#183;</span></i></a>(<a href="#f-fracDigitRemSeq" shape="rect"><i><span class="arrow">&#183;</span>FractionDigitRemainderSeq<span class="arrow">&#183;</span></i></a>(<var>f</var>))</sub>)&#160;.</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Generic Number to Numeral Canonical Mappings</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-unsNoDecCanFragMap" id="f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>i</var>) &#8594; <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>
<div class="defindent">Maps a nonnegative integer to a <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>i</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<a href="#f-digit" shape="rect"><i><span class="arrow">&#183;</span>digit<span class="arrow">&#183;</span></i></a>(<a href="#f-digitSeq" shape="rect"><i><span class="arrow">&#183;</span>digitSeq<span class="arrow">&#183;</span></i></a>(<var>i</var>)<sub><a href="#f-lastSigDigit" shape="rect"><i><span class="arrow">&#183;</span>lastSignificantDigit<span class="arrow">&#183;</span></i></a>(<a href="#f-digitRemSeq" shape="rect"><i><span class="arrow">&#183;</span>digitRemainderSeq<span class="arrow">&#183;</span></i></a>(<var>i</var>))</sub>)&#160;&amp;
.&#160;.&#160;.&#160;&amp;
<a href="#f-digit" shape="rect"><i><span class="arrow">&#183;</span>digit<span class="arrow">&#183;</span></i></a>(<a href="#f-digitSeq" shape="rect"><i><span class="arrow">&#183;</span>digitSeq<span class="arrow">&#183;</span></i></a>(<var>i</var>)<sub>0</sub>)&#160;.&#160;&#160; (Note
that the concatenation is in reverse order.)</div>
<div class="deftop"><b><a name="f-noDecCanMap" id="f-noDecCanMap" shape="rect"><i><span class="arrow">&#183;</span>noDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>i</var>) &#8594; <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a>
<div class="defindent">Maps an integer to a <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>i</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p">'<code>-</code>'&#160;&amp;&#160;<a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(&#8722;<var>i</var>)&#160;&#160;
when <var>i</var> is negative,</div></li><li><div class="p"><a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>i</var>)&#160;&#160; otherwise.</div></li></ul>
</div>
<div class="deftop"><b><a name="f-unsDecCanFragMap" id="f-unsDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>n</var>) &#8594; <a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a>
<div class="defindent">Maps a nonnegative decimal number to a <a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>n</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative decimal number</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-unsDecNuml" shape="rect"><i>unsignedDecimalPtNumeral</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return&#160; <a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>n</var><a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>1)&#160;&amp;
'<code>.</code>'&#160;&amp; <a href="#f-fracDigitsMap" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitsCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>n</var><a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>1)&#160;.</div>
<div class="deftop"><b><a name="f-decCanFragMap" id="f-decCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>decimalPtCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>n</var>) &#8594; <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a>
<div class="defindent">Maps a decimal number to a <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>n</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a decimal number</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p">'<code>-</code>'&#160;&amp;&#160;<a href="#f-unsDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(&#8722;<var>i</var>)&#160;&#160;
when <var>i</var> is negative,</div></li><li><div class="p"><a href="#f-unsDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>i</var>)&#160;&#160; otherwise.</div></li></ul>
</div>
<div class="deftop"><b><a name="f-unsSciCanFragMap" id="f-unsSciCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedScientificCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>n</var>) &#8594; <a href="#nt-unsSciNuml" shape="rect"><i>unsignedScientificNotationNumeral</i></a>
<div class="defindent">Maps a nonnegative decimal number to a <a href="#nt-unsSciNuml" shape="rect"><i>unsignedScientificNotationNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>n</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative decimal number</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-unsSciNuml" shape="rect"><i>unsignedScientificNotationNumeral</i></a></div>
<b>Algorithm:</b>
<div class="defindent">
Return&#160; <a href="#f-unsDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>n</var>&#160;/&#160;10<sup>log(<var>n</var>)&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;1</sup>)&#160;&amp;
'<code>E</code>'&#160;&amp;
<a href="#f-noDecCanMap" shape="rect"><i><span class="arrow">&#183;</span>noDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(log(<var>n</var>)&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;1)
</div>
<div class="deftop"><b><a name="f-sciCanFragMap" id="f-sciCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>scientificCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>n</var>) &#8594; <a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a>
<div class="defindent">Maps a decimal number to a <a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a>, its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>n</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a decimal number</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p">'<code>-</code>'&#160;&amp;&#160;<a href="#f-unsSciCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedScientificCanonicalMap<span class="arrow">&#183;</span></i></a>(&#8722;<var>n</var>)&#160;&#160;
when <var>n</var> is negative,</div></li><li><div class="p"><a href="#f-unsSciCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedScientificCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>i</var>)&#160;&#160; otherwise.</div></li></ul>
</div>
</div></div><p>For example:
</p><ul><li><div class="p">123.4567&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;1&#160;=&#160;0.4567&#160; and&#160; 123.4567&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;1&#160;=&#160;123&#160;.</div></li><li><div class="p"><a href="#f-digitRemSeq" shape="rect"><i><span class="arrow">&#183;</span>digitRemainderSeq<span class="arrow">&#183;</span></i></a>(123)&#160; is&#160; 123&#160;,&#160;12&#160;,&#160;1&#160;,&#160;0&#160;,&#160;0&#160;,&#160;.&#160;.&#160;.&#160;.</div></li><li><div class="p"><a href="#f-digitSeq" shape="rect"><i><span class="arrow">&#183;</span>digitSeq<span class="arrow">&#183;</span></i></a>(123)&#160; is&#160; 3&#160;,&#160;2&#160;,&#160;1&#160;,&#160;0&#160;,&#160;0&#160;,&#160;.&#160;.&#160;.&#160;.</div></li><li><div class="p"><a href="#f-lastSigDigit" shape="rect"><i><span class="arrow">&#183;</span>lastSignificantDigit<span class="arrow">&#183;</span></i></a>(<a href="#f-digitRemSeq" shape="rect"><i><span class="arrow">&#183;</span>digitRemainderSeq<span class="arrow">&#183;</span></i></a>(123))&#160;=&#160;2&#160;&#160; (Sequences count from 0.)</div></li><li><div class="p"><a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(123)&#160;=&#160;'<code>123</code>'</div></li><li><div class="p"><a href="#f-fracDigitRemSeq" shape="rect"><i><span class="arrow">&#183;</span>FractionDigitRemainderSeq<span class="arrow">&#183;</span></i></a>(0.4567)&#160; is&#160; 4.567&#160;,&#160;5.67&#160;,&#160;6.7&#160;,&#160;7&#160;,&#160;0&#160;,&#160;0&#160;,&#160;.&#160;.&#160;.&#160;.</div></li><li><div class="p"><a href="#f-fracDigitSeq" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitSeq<span class="arrow">&#183;</span></i></a>(0.4567)&#160; is&#160; 4&#160;,&#160;5&#160;,&#160;6&#160;,&#160;7&#160;,&#160;0&#160;,&#160;0&#160;,&#160;.&#160;.&#160;.&#160;.</div></li><li><div class="p"><a href="#f-lastSigDigit" shape="rect"><i><span class="arrow">&#183;</span>lastSignificantDigit<span class="arrow">&#183;</span></i></a>(<a href="#f-fracDigitRemSeq" shape="rect"><i><span class="arrow">&#183;</span>FractionDigitRemainderSeq<span class="arrow">&#183;</span></i></a>(0.4567))&#160;=&#160;3</div></li><li><div class="p"><a href="#f-fracDigitsMap" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitsCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(0.4567)&#160;=&#160;'<code>4567</code>'</div></li><li><div class="p"><a href="#f-unsDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(123.4567)&#160;=&#160;'<code>123.4567</code>'</div></li></ul><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping for Non-numerical <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>Special Values<span class="arrow">&#183;</span></a> Used With Numerical Datatypes</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-specRepVal" id="f-specRepVal" shape="rect"><i><span class="arrow">&#183;</span>specialRepValue<span class="arrow">&#183;</span></i></a></b> (<var>S</var>) &#8594; a <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special value<span class="arrow">&#183;</span></a>
<div class="defindent">Maps the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representations<span class="arrow">&#183;</span></a> of <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a> used with some
numerical datatypes to those <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>S</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-numSpecReps" shape="rect"><i>numericalSpecialRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">one of <b><i>positiveInfinity</i></b>,
<b><i>negativeInfinity</i></b>, or <b><i>notANumber</i></b>.</div>
<b>Algorithm:</b>
<div class="defindent">
Return
<ul><li><div class="p"><b><i>positiveInfinity</i></b>&#160;&#160; when <var>S</var> is
'<code>INF</code>' or '<code>+INF</code>',</div></li><li><div class="p"><b><i>negativeInfinity</i></b>&#160;&#160; when <var>S</var> is
'<code>-INF</code>', and</div></li><li><div class="p"><b><i>notANumber</i></b>&#160;&#160; when <var>S</var> is
'<code>NaN</code>'
</div></li></ul>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping for Non-numerical <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>Special Values<span class="arrow">&#183;</span></a> Used with Numerical Datatypes</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-specValCanMap" id="f-specValCanMap" shape="rect"><i><span class="arrow">&#183;</span>specialRepCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>c</var>) &#8594; <a href="#nt-numSpecReps" shape="rect"><i>numericalSpecialRep</i></a>
<div class="defindent">Maps the <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special values<span class="arrow">&#183;</span></a> used with some numerical datatypes to their <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representations<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>c</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">one of <b><i>positiveInfinity</i></b>,
<b><i>negativeInfinity</i></b>, and <b><i>notANumber</i></b></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-numSpecReps" shape="rect"><i>numericalSpecialRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p">'<code>INF</code>'&#160;&#160; when <var>c</var> is <b><i>positiveInfinity</i></b></div></li><li><div class="p">'<code>-INF</code>'&#160;&#160; when <var>c</var> is <b><i>negativeInfinity</i></b></div></li><li><div class="p">'<code>NaN</code>'&#160;&#160; when <var>c</var> is <b><i>notANumber</i></b></div></li></ul>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-decimalLexmap" id="f-decimalLexmap" shape="rect"><i><span class="arrow">&#183;</span>decimalLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#decimal" shape="rect">decimal</a>
<div class="defindent">Maps a <a href="#nt-decimalRep" shape="rect"><i>decimalLexicalRep</i></a> onto a <a href="#decimal" shape="rect">decimal</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-decimalRep" shape="rect"><i>decimalLexicalRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#decimal" shape="rect">decimal</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>d</var> be a <a href="#decimal" shape="rect">decimal</a> value.</td></tr></tbody></table></div>
<div class="defindent">
<ol class="enumar"><li><div class="p">Set <var>d</var> to
<ul><li><div class="p"><a href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a>(<var>LEX</var>)&#160;&#160; when
<var>LEX</var> is an instance of <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a>, and</div></li><li><div class="p"><a href="#f-decVal" shape="rect"><i><span class="arrow">&#183;</span>decimalPtMap<span class="arrow">&#183;</span></i></a>(<var>LEX</var>)&#160;&#160; when
<var>LEX</var> is an instance of <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a>,</div></li></ul>
</div></li><li><div class="p">Return <var>d</var>.</div></li></ol>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-decimalCanmap" id="f-decimalCanmap" shape="rect"><i><span class="arrow">&#183;</span>decimalCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>d</var>) &#8594; <a href="#nt-decimalRep" shape="rect"><i>decimalLexicalRep</i></a>
<div class="defindent">Maps a <a href="#decimal" shape="rect">decimal</a> to its <a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>,
a <a href="#nt-decimalRep" shape="rect"><i>decimalLexicalRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>d</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#decimal" shape="rect">decimal</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching <a href="#nt-decimalRep" shape="rect"><i>decimalLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent">
<ol class="enumar"><li><div class="p">If <var>d</var> is an integer, then return
<a href="#f-noDecCanMap" shape="rect"><i><span class="arrow">&#183;</span>noDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>d</var>).</div></li><li><div class="p">Otherwise, return
<a href="#f-decCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>decimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>d</var>).</div></li></ol>
</div>
</div></div><div class="defset">
<div class="aux">
<div class="defset-head">Auxiliary Functions
for Binary Floating-point Lexical/Canonical Mappings</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-floatPtRound" id="f-floatPtRound" shape="rect"><i><span class="arrow">&#183;</span>floatingPointRound<span class="arrow">&#183;</span></i></a></b> (<var>nV</var>,&#160;<var>cWidth</var>,&#160;<var>eMin</var>,&#160;<var>eMax</var>) &#8594; decimal number or <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special value<span class="arrow">&#183;</span></a>
<div class="defindent">Rounds a non-zero decimal number to the nearest floating-point value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>nV</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an initially non-zero decimal number <em>(may be
set to zero during calculations)</em></td></tr>
<tr><td rowspan="1" colspan="1"><var>cWidth</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a positive integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>eMin</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>eMax</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer greater than <var>eMin</var></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a decimal number or <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special value<span class="arrow">&#183;</span></a> <em>(<b><i>INF</i></b> or &#8722;<b><i>INF</i></b>)</em></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>s</var> be an integer intially 1,</div></li><li><div class="p"><var>c</var> be a nonnegative integer, and</div></li><li><div class="p"><var>e</var> be an integer.</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">
<ol class="enumar"><li><div class="p">Set <var>s</var> to &#8722;1&#160;&#160; when&#160; <var>nV</var>&#160;&lt;&#160;0&#160;.</div></li><li><div class="p">So select <var>e</var> that
2<sup><var>cWidth</var></sup>&#160;&#215;&#160;2<sup>(<var>e</var>&#8722;1)</sup>
&#8804; |<var>nV</var>|
&lt;
2<sup><var>cWidth</var></sup>&#160;&#215;&#160;2<sup><var>e</var></sup>&#160;.</div></li><li><div class="p">So select <var>c</var> that&#160;
(<var>c</var>&#160;&#8722;&#160;1)&#160;&#215;&#160;2<sup><var>e</var></sup>&#160;&#8804;&#160;|<var>nV</var>&#160;|&#160;&lt;<var>c</var>&#160;&#215;&#160;2<sup><var>e</var></sup>&#160; &#160;.</div></li><li><div class="p"><ul><li><div class="p">when&#160; <var>eMax</var>&#160;&lt;&#160;<var>e</var>&#160; <em>(overflow)</em>
return:<ul><li><div class="p"><b><i>positiveInfinity</i></b>&#160;&#160; when <var>s</var> is positive, and</div></li><li><div class="p"><b><i>negativeInfinity</i></b>&#160;&#160; otherwise.</div></li></ul>
</div></li><li><div class="p">otherwise:<ol class="enumla"><li><div class="p">When <var>e</var>&#160;&lt;&#160;<var>eMin</var>&#160; <em>(underflow):</em><ul><li><div class="p">Set&#160; <var>e</var>&#160;=&#160;<var>eMin</var></div></li><li><div class="p">So select <var>c</var> that&#160;
(<var>c</var>&#160;&#8722;&#160;1)&#160;&#215;&#160;2<sup><var>e</var></sup>&#160;&#8804;&#160;|<var>nV</var>&#160;|&#160;&lt;<var>c</var>&#160;&#215;&#160;2<sup><var>e</var></sup>&#160;.
</div></li></ul></div></li><li><div class="p">Set <var>nV</var> to<ul><li><div class="p"><var>c</var>&#160;&#215;&#160;2<sup><var>e</var></sup>&#160;&#160;
when&#160;
|<var>nV</var>&#160;|&#160;&gt;&#160;<var>c</var>&#160;&#215;&#160;2<sup><var>e</var></sup>&#160;&#8722;&#160;2<sup>(<var>e</var>&#8722;1)</sup>&#160;;</div></li><li><div class="p">(<var>c</var>&#160;&#8722;&#160;1)&#160;&#215;&#160;2<sup>e</sup>&#160;&#160;
when&#160;
|<var>nV</var>&#160;|&#160;&lt;&#160;<var>c</var>&#160;&#215;&#160;2<sup><var>e</var></sup>&#160;&#8722;&#160;2<sup>(<var>e</var>&#8722;1)</sup>&#160;;</div></li><li><div class="p"><var>c</var>&#160;&#215;&#160;2<sup><var>e</var></sup> or
(<var>c</var>&#160;&#8722;&#160;1)&#160;&#215;&#160;2<sup><var>e</var></sup>&#160;&#160;
according to whether <var>c</var> is even
or&#160; <var>c</var>&#160;&#8722;&#160;1&#160; is even, otherwise (i.e.,&#160;
|<var>nV</var>&#160;|&#160;=&#160;<var>c</var>&#160;&#215;&#160;2<sup><var>e</var></sup>&#160;&#8722;&#160;2<sup>(<var>e</var>&#8722;1)</sup>&#160;,
the midpoint between the two values).</div></li></ul></div></li><li><div class="p">Return&#160;
<ul><li><div class="p"><var>s</var>&#160;&#215;&#160;<var>nV</var>&#160;&#160;
when <var>nV</var>&#160;&lt;&#160;2<sup><var>cWidth</var></sup>&#160;&#215;&#160;2<sup><var>eMax</var></sup>,</div></li><li><div class="p"><b><i>positiveInfinity</i></b>&#160;&#160; when <var>s</var> is positive, and</div></li><li><div class="p"><b><i>negativeInfinity</i></b>&#160;&#160; otherwise.</div></li></ul>
</div></li></ol></div></li></ul></div></li></ol>
<div class="note"><div class="p"><b>Note:</b> Implementers will find the algorithms of <a href="#clinger1990" shape="rect">[Clinger, WD (1990)]</a>
more efficient in memory than the simple abstract algorithm employed above.</div></div>
</div>
<div class="deftop"><b><a name="f-round" id="f-round" shape="rect"><i><span class="arrow">&#183;</span>round<span class="arrow">&#183;</span></i></a></b> (<var>n</var>,&#160;<var>k</var>) &#8594; decimal number
<div class="defindent">Maps a decimal number to that value rounded by some power of 10.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>n</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a decimal number</td></tr>
<tr><td rowspan="1" colspan="1"><var>k</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a decimal number</div>
<b>Algorithm:</b>
<div class="defindent">Return&#160;
((<var>n</var>&#160;/&#160;10<sup>k</sup>&#160;+&#160;0.5)&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>1)&#160;&#215;&#160;10<sup>k</sup>&#160;.</div>
<div class="deftop"><b><a name="f-floatApprox" id="f-floatApprox" shape="rect"><i><span class="arrow">&#183;</span>floatApprox<span class="arrow">&#183;</span></i></a></b> (<var>c</var>,&#160;<var>e</var>,&#160;<var>j</var>) &#8594; decimal number
<div class="defindent">Maps a decimal number
(&#160;<var>c</var>&#160;&#215;&#160;10<sup>e</sup>&#160;) to
successive approximations.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>c</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>e</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>j</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a decimal number</div>
<b>Algorithm:</b>
<div class="defindent">Return&#160;
<a href="#f-round" shape="rect"><i><span class="arrow">&#183;</span>round<span class="arrow">&#183;</span></i></a>(<var>c</var>,&#160;<var>j</var>&#160;)&#160;&#215;&#160;10<sup><var>e</var></sup></div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-floatLexmap" id="f-floatLexmap" shape="rect"><i><span class="arrow">&#183;</span>floatLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#float" shape="rect">float</a>
<div class="defindent">Maps a <a href="#nt-floatRep" shape="rect"><i>floatRep</i></a> onto a <a href="#float" shape="rect">float</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-floatRep" shape="rect"><i>floatRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#float" shape="rect">float</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<var>nV</var> be a decimal number or <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special value<span class="arrow">&#183;</span></a> (INF or &#8722;INF).
</td></tr></tbody></table></div>
<div class="defindent">
<ul><li><div class="p">Return <a href="#f-specRepVal" shape="rect"><i><span class="arrow">&#183;</span>specialRepValue<span class="arrow">&#183;</span></i></a>(<var>LEX</var>)&#160;&#160; when <var>LEX</var>
is an instance of <a href="#nt-numSpecReps" shape="rect"><i>numericalSpecialRep</i></a>;</div></li><li><div class="p">otherwise (<var>LEX</var> is a numeral):<ol class="enumar"><li><div class="p">Set <var>nV</var> to<ul><li><div class="p"><a href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a>(<var>LEX</var>)&#160;&#160; when
<var>LEX</var> is an instance of <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a>,</div></li><li><div class="p"><a href="#f-decVal" shape="rect"><i><span class="arrow">&#183;</span>decimalPtMap<span class="arrow">&#183;</span></i></a>(<var>LEX</var>)&#160;&#160; when
<var>LEX</var> is an instance of <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a>, and</div></li><li><div class="p"><a href="#f-sciVal" shape="rect"><i><span class="arrow">&#183;</span>scientificMap<span class="arrow">&#183;</span></i></a>(<var>LEX</var>)&#160;&#160; otherwise
(<var>LEX</var> is an instance of <a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a>).</div></li></ul></div></li><li><div class="p">Set <var>nV</var> to
<a href="#f-floatPtRound" shape="rect"><i><span class="arrow">&#183;</span>floatingPointRound<span class="arrow">&#183;</span></i></a>(<var>nV</var>,&#160;24,&#160;&#8722;149,&#160;104)&#160;&#160;
when <var>nV</var> is not zero.&#160; <em>(<a href="#f-floatPtRound" shape="rect"><i><span class="arrow">&#183;</span>floatingPointRound<span class="arrow">&#183;</span></i></a>
may nonetheless return zero, or INF or &#8722;INF.)</em></div></li><li><div class="p">Return:<ul><li><div class="p">When <var>nV</var> is zero:<ul><li><div class="p"><b><i>negativeZero</i></b>&#160;&#160; when
the first character of <var>LEX</var> is '<code>-</code>', and</div></li><li><div class="p"><b><i>positiveZero</i></b>&#160;&#160; otherwise.</div></li></ul></div></li><li><div class="p"><var>nV</var>&#160;&#160;
otherwise.</div></li></ul></div></li></ol></div></li></ul>
<div class="note"><div class="p"><b>Note:</b> This specification permits the substitution of any other rounding algorithm
which conforms to the requirements of <a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>.</div></div>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-doubleLexmap" id="f-doubleLexmap" shape="rect"><i><span class="arrow">&#183;</span>doubleLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#double" shape="rect">double</a>
<div class="defindent">Maps a <a href="#nt-doubleRep" shape="rect"><i>doubleRep</i></a> onto a <a href="#double" shape="rect">double</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-doubleRep" shape="rect"><i>doubleRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#double" shape="rect">double</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<var>nV</var> be a decimal number or <a href="#dt-specialvalue" class="termref" shape="rect"><span class="arrow">&#183;</span>special value<span class="arrow">&#183;</span></a> (INF or &#8722;INF).
</td></tr></tbody></table></div>
<div class="defindent">
<ul><li><div class="p">Return <a href="#f-specRepVal" shape="rect"><i><span class="arrow">&#183;</span>specialRepValue<span class="arrow">&#183;</span></i></a>(<var>LEX</var>)&#160;&#160; when <var>LEX</var>
is an instance of <a href="#nt-numSpecReps" shape="rect"><i>numericalSpecialRep</i></a>;</div></li><li><div class="p">otherwise (<var>LEX</var> is a numeral):<ol class="enumar"><li><div class="p">Set <var>nV</var> to<ul><li><div class="p"><a href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a>(<var>LEX</var>)&#160;&#160; when
<var>LEX</var> is an instance of <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a>,</div></li><li><div class="p"><a href="#f-decVal" shape="rect"><i><span class="arrow">&#183;</span>decimalPtMap<span class="arrow">&#183;</span></i></a>(<var>LEX</var>)&#160;&#160; when
<var>LEX</var> is an instance of <a href="#nt-decNuml" shape="rect"><i>decimalPtNumeral</i></a>, and</div></li><li><div class="p"><a href="#f-sciVal" shape="rect"><i><span class="arrow">&#183;</span>scientificMap<span class="arrow">&#183;</span></i></a>(<var>LEX</var>)&#160;&#160; otherwise
(<var>LEX</var> is an instance of <a href="#nt-sciNuml" shape="rect"><i>scientificNotationNumeral</i></a>).</div></li></ul></div></li><li><div class="p">Set <var>nV</var> to
<a href="#f-floatPtRound" shape="rect"><i><span class="arrow">&#183;</span>floatingPointRound<span class="arrow">&#183;</span></i></a>(<var>nV</var>,&#160;53,&#160;&#8722;1074,&#160;971)&#160;&#160;
when <var>nV</var> is not zero.&#160; <em>(<a href="#f-floatPtRound" shape="rect"><i><span class="arrow">&#183;</span>floatingPointRound<span class="arrow">&#183;</span></i></a>
may nonetheless return zero, or INF or &#8722;INF.)</em></div></li><li><div class="p">Return:<ul><li><div class="p">When <var>nV</var> is zero:<ul><li><div class="p"><b><i>negativeZero</i></b>&#160;&#160; when
the first character of <var>LEX</var> is '<code>-</code>', and</div></li><li><div class="p"><b><i>positiveZero</i></b>&#160;&#160; otherwise.</div></li></ul></div></li><li><div class="p"><var>nV</var>&#160;&#160;
otherwise.</div></li></ul></div></li></ol></div></li></ul>
<div class="note"><div class="p"><b>Note:</b> This specification permits the substitution of any other rounding algorithm
which conforms to the requirements of <a href="#ieee754-2008" shape="rect">[IEEE 754-2008]</a>.</div></div>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-floatCanmap" id="f-floatCanmap" shape="rect"><i><span class="arrow">&#183;</span>floatCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>f</var>) &#8594; <a href="#nt-floatRep" shape="rect"><i>floatRep</i></a>
<div class="defindent">Maps a <a href="#float" shape="rect">float</a> to its
<a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>, a <a href="#nt-floatRep" shape="rect"><i>floatRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>f</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#float" shape="rect">float</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching <a href="#nt-floatRep" shape="rect"><i>floatRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>l</var> be a nonnegative integer</div></li><li><div class="p"><var>s</var> be an integer intially 1,</div></li><li><div class="p"><var>c</var> be a positive integer, and</div></li><li><div class="p"><var>e</var> be an integer.</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">
<ul><li><div class="p">Return <a href="#f-specValCanMap" shape="rect"><i><span class="arrow">&#183;</span>specialRepCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>f</var>&#160;)&#160;&#160;
when <var>f</var> is one of <b><i>positiveInfinity</i></b>,
<b><i>negativeInfinity</i></b>, or <b><i>notANumber</i></b>;</div></li><li><div class="p">return '<code>0.0E0</code>'&#160;&#160; when <var>f</var>
is <b><i>positiveZero</i></b>;</div></li><li><div class="p">return '<code>-0.0E0</code>'&#160;&#160; when <var>f</var>
is <b><i>negativeZero</i></b>;</div></li><li><div class="p">otherwise (<var>f</var> is numeric and non-zero):<ol class="enumar"><li><div class="p">Set <var>s</var> to &#8722;1&#160;&#160; when&#160;
<var>f</var>&#160;&lt;&#160;0&#160;.</div></li><li><div class="p">Let <var>c</var> be the smallest integer for which there exists
an integer <var>e</var> for which&#160;
|<var>f</var>&#160;|&#160;=&#160;<var>c</var>&#160;&#215;&#160;10<sup><var>e</var></sup>&#160;.</div></li><li><div class="p">Let <var>e</var> be log<sub>10</sub>(|<var>f</var>&#160;|&#160;/&#160;<var>c</var>)&#160;&#160;
(so that&#160;
|<var>f</var>&#160;|&#160;=&#160;<var>c</var>&#160;&#215;&#160;10<sup><var>e</var></sup>&#160;).</div></li><li><div class="p">Let <var>l</var> be the largest nonnegative integer for which&#160;
<var>c</var>&#160;&#215;&#160;10<sup><var>e</var></sup>&#160;=
<a href="#f-floatPtRound" shape="rect"><i><span class="arrow">&#183;</span>floatingPointRound<span class="arrow">&#183;</span></i></a>(<a href="#f-floatApprox" shape="rect"><i><span class="arrow">&#183;</span>floatApprox<span class="arrow">&#183;</span></i></a>(<var>c</var>,&#160;<var>e</var>,&#160;<var>l</var>&#160;),&#160;24,&#160;&#8722;149,&#160;104)</div></li><li><div class="p">Return
<a href="#f-sciCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>scientificCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>s</var>&#160;&#215; <a href="#f-floatApprox" shape="rect"><i><span class="arrow">&#183;</span>floatApprox<span class="arrow">&#183;</span></i></a>(<var>c</var>,&#160;<var>e</var>,&#160;<var>l</var>&#160;))&#160;.</div></li></ol></div></li></ul>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-doubleCanmap" id="f-doubleCanmap" shape="rect"><i><span class="arrow">&#183;</span>doubleCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>f</var>) &#8594; <a href="#nt-doubleRep" shape="rect"><i>doubleRep</i></a>
<div class="defindent">Maps a <a href="#double" shape="rect">double</a> to its
<a href="#dt-canonical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical representation<span class="arrow">&#183;</span></a>, a <a href="#nt-doubleRep" shape="rect"><i>doubleRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>f</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#double" shape="rect">double</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching <a href="#nt-doubleRep" shape="rect"><i>doubleRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>l</var> be a nonnegative integer</div></li><li><div class="p"><var>s</var> be an integer intially 1,</div></li><li><div class="p"><var>c</var> be a positive integer, and</div></li><li><div class="p"><var>e</var> be an integer.</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">
<ul><li><div class="p">Return <a href="#f-specValCanMap" shape="rect"><i><span class="arrow">&#183;</span>specialRepCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>f</var>&#160;)&#160;&#160;
when <var>f</var> is one of <b><i>positiveInfinity</i></b>,
<b><i>negativeInfinity</i></b>, or <b><i>notANumber</i></b>;</div></li><li><div class="p">return '<code>0.0E0</code>'&#160;&#160; when <var>f</var>
is <b><i>positiveZero</i></b>;</div></li><li><div class="p">return '<code>-0.0E0</code>'&#160;&#160; when <var>f</var>
is <b><i>negativeZero</i></b>;</div></li><li><div class="p">otherwise (<var>f</var> is numeric and non-zero):<ol class="enumar"><li><div class="p">Set <var>s</var> to &#8722;1&#160;&#160; when&#160;
<var>f</var>&#160;&lt;&#160;0&#160;.</div></li><li><div class="p">Let <var>c</var> be the smallest integer for which there exists
an integer <var>e</var> for which&#160;
|<var>f</var>&#160;|&#160;=&#160;<var>c</var>&#160;&#215;&#160;10<sup><var>e</var></sup>&#160;.</div></li><li><div class="p">Let <var>e</var> be log<sub>10</sub>(|<var>f</var>&#160;|&#160;/&#160;<var>c</var>)&#160;&#160;
(so that&#160;
|<var>f</var>&#160;|&#160;=&#160;<var>c</var>&#160;&#215;&#160;10<sup><var>e</var></sup>&#160;).</div></li><li><div class="p">Let <var>l</var> be the largest nonnegative integer for which&#160;
<var>c</var>&#160;&#215;&#160;10<sup><var>e</var></sup>&#160;=
<a href="#f-floatPtRound" shape="rect"><i><span class="arrow">&#183;</span>floatingPointRound<span class="arrow">&#183;</span></i></a>(<a href="#f-floatApprox" shape="rect"><i><span class="arrow">&#183;</span>floatApprox<span class="arrow">&#183;</span></i></a>(<var>c</var>,&#160;<var>e</var>,&#160;<var>l</var>&#160;),&#160;53,&#160;&#8722;1074,&#160;971)</div></li><li><div class="p">Return
<a href="#f-sciCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>scientificCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>s</var>&#160;&#215; <a href="#f-floatApprox" shape="rect"><i><span class="arrow">&#183;</span>floatApprox<span class="arrow">&#183;</span></i></a>(<var>c</var>,&#160;<var>e</var>,&#160;<var>l</var>&#160;))&#160;.</div></li></ol></div></li></ul>
</div>
</div></div></div><div class="div2">
<h3><span class="nav"><a href="#sec-generic-number-functions" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#sec-dt-functions" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="sec-duration-functions" id="sec-duration-functions" shape="rect"></a>E.2 Duration-related Definitions</h3><div class="block">The following functions are primarily
used with the <a href="#duration" shape="rect">duration</a> datatype and its
derivatives.
<div class="defset">
<div class="aux">
<div class="defset-head">Auxiliary <a href="#duration" shape="rect">duration</a>-related
Functions Operating on Representation Fragments</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-duYrMap" id="f-duYrMap" shape="rect"><i><span class="arrow">&#183;</span>duYearFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>Y</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-duYrFrag" shape="rect"><i>duYearFrag</i></a> to an integer, intended as part of the value of the <a href="#vp-du-month" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> property of a <a href="#duration" shape="rect">duration</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>Y</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-duYrFrag" shape="rect"><i>duYearFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative integer</div>
<b>Algorithm:</b>
<div class="defindent"><var>Y</var> is necessarily the letter '<code>Y</code>' followed by a numeral <var>N</var>:</div>
<div class="defindent">Return <a href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a>(<var>N</var>).</div>
<div class="deftop"><b><a name="f-duMoMap" id="f-duMoMap" shape="rect"><i><span class="arrow">&#183;</span>duMonthFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>M</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-duMoFrag" shape="rect"><i>duMonthFrag</i></a> to an integer, intended as part of the value of the <a href="#vp-du-month" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> property of a <a href="#duration" shape="rect">duration</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>M</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-duYrFrag" shape="rect"><i>duYearFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative integer</div>
<b>Algorithm:</b>
<div class="defindent"><var>M</var> is necessarily the letter '<code>M</code>' followed by a numeral <var>N</var>:</div>
<div class="defindent">Return <a href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a>(<var>N</var>).</div>
<div class="deftop"><b><a name="f-duDaMap" id="f-duDaMap" shape="rect"><i><span class="arrow">&#183;</span>duDayFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>D</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-duDaFrag" shape="rect"><i>duDayFrag</i></a> to an integer, intended as part of the value of the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> property of a <a href="#duration" shape="rect">duration</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>D</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-duDaFrag" shape="rect"><i>duDayFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative integer</div>
<b>Algorithm:</b>
<div class="defindent"><var>D</var> is necessarily the letter '<code>D</code>' followed by a numeral <var>N</var>:</div>
<div class="defindent">Return <a href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a>(<var>N</var>).</div>
<div class="deftop"><b><a name="f-duHrMap" id="f-duHrMap" shape="rect"><i><span class="arrow">&#183;</span>duHourFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>H</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-duHrFrag" shape="rect"><i>duHourFrag</i></a> to an integer, intended as part of the value of the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> property of a <a href="#duration" shape="rect">duration</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>H</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-duHrFrag" shape="rect"><i>duHourFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative integer</div>
<b>Algorithm:</b>
<div class="defindent"><var>D</var> is necessarily the letter '<code>D</code>' followed by a numeral <var>N</var>:</div>
<div class="defindent">Return <a href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a>(<var>N</var>).</div>
<div class="deftop"><b><a name="f-duMiMap" id="f-duMiMap" shape="rect"><i><span class="arrow">&#183;</span>duMinuteFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>M</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-duMiFrag" shape="rect"><i>duMinuteFrag</i></a> to an integer, intended as part of the value of the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> property of a <a href="#duration" shape="rect">duration</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>M</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-duMiFrag" shape="rect"><i>duMinuteFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative integer</div>
<b>Algorithm:</b>
<div class="defindent"><var>M</var> is necessarily the letter '<code>M</code>' followed by a numeral <var>N</var>:</div>
<div class="defindent">Return <a href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a>(<var>N</var>).</div>
<div class="deftop"><b><a name="f-duSeMap" id="f-duSeMap" shape="rect"><i><span class="arrow">&#183;</span>duSecondFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>S</var>) &#8594; decimal number
<div class="defindent">Maps a <a href="#nt-duSeFrag" shape="rect"><i>duSecondFrag</i></a> to a decimal number, intended as part of the value of the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> property of a <a href="#duration" shape="rect">duration</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>S</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-duSeFrag" shape="rect"><i>duSecondFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative decimal number</div>
<b>Algorithm:</b>
<div class="defindent"><var>S</var> is necessarily '<code>S</code>' followed by a numeral <var>N</var>:</div>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-decVal" shape="rect"><i><span class="arrow">&#183;</span>decimalPtMap<span class="arrow">&#183;</span></i></a>(<var>N</var>)&#160;&#160; when '<code>.</code>' occurs
in <var>N</var>, and</div></li><li><div class="p"><a href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a>(<var>N</var>)&#160;&#160; otherwise.</div></li></ul>
</div>
<div class="deftop"><b><a name="f-duYMMap" id="f-duYMMap" shape="rect"><i><span class="arrow">&#183;</span>duYearMonthFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>YM</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-duYMFrag" shape="rect"><i>duYearMonthFrag</i></a> into an integer, intended as part of the <a href="#vp-du-month" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> property of a <a href="#duration" shape="rect">duration</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>YM</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-duYMFrag" shape="rect"><i>duYearMonthFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative integer</div>
<b>Algorithm:</b>
<div class="defindent"><var>YM</var> necessarily consists of an
instance <var>Y</var> of <a href="#nt-duYrFrag" shape="rect"><i>duYearFrag</i></a> and/or an instance <var>M</var> of
<a href="#nt-duMoFrag" shape="rect"><i>duMonthFrag</i></a>:</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>y</var> be <a href="#f-duYrMap" shape="rect"><i><span class="arrow">&#183;</span>duYearFragmentMap<span class="arrow">&#183;</span></i></a>(<var>Y</var>) (or 0 if <var>Y</var> is not present) and</div></li><li><div class="p"><var>m</var> be <a href="#f-duMoMap" shape="rect"><i><span class="arrow">&#183;</span>duMonthFragmentMap<span class="arrow">&#183;</span></i></a>(<var>M</var>) (or 0 if <var>M</var> is not present).</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">Return&#160; 12&#160;&#215;&#160;<var>y</var>&#160;+ <var>m</var>&#160;.</div>
<div class="deftop"><b><a name="f-duTMap" id="f-duTMap" shape="rect"><i><span class="arrow">&#183;</span>duTimeFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>T</var>) &#8594; decimal number
<div class="defindent">Maps a <a href="#nt-duTFrag" shape="rect"><i>duTimeFrag</i></a> into a decimal number, intended as part of the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> property of a <a href="#duration" shape="rect">duration</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>T</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-duTFrag" shape="rect"><i>duTimeFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative decimal number</div>
<b>Algorithm:</b>
<div class="defindent"><var>T</var> necessarily consists of an instance
<var>H</var> of <a href="#nt-duHrFrag" shape="rect"><i>duHourFrag</i></a>, and/or an instance <var>M</var> of
<a href="#nt-duMiFrag" shape="rect"><i>duMinuteFrag</i></a>, and/or an instance <var>S</var> of
<a href="#nt-duSeFrag" shape="rect"><i>duSecondFrag</i></a>.</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>h</var> be <a href="#f-duDaMap" shape="rect"><i><span class="arrow">&#183;</span>duDayFragmentMap<span class="arrow">&#183;</span></i></a>(<var>H</var>)
(or 0 if <var>H</var> is not present),</div></li><li><div class="p"><var>m</var> be <a href="#f-duMiMap" shape="rect"><i><span class="arrow">&#183;</span>duMinuteFragmentMap<span class="arrow">&#183;</span></i></a>(<var>M</var>)
(or 0 if <var>M</var> is not present), and</div></li><li><div class="p"><var>s</var> be <a href="#f-duSeMap" shape="rect"><i><span class="arrow">&#183;</span>duSecondFragmentMap<span class="arrow">&#183;</span></i></a>(<var>S</var>)
(or 0 if <var>S</var> is not present).</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">Return&#160;
3600&#160;&#215;&#160;<var>h</var>&#160;+&#160;60&#160;&#215;&#160;<var>m</var>&#160;+&#160;s&#160;.</div>
<div class="deftop"><b><a name="f-duDTMap" id="f-duDTMap" shape="rect"><i><span class="arrow">&#183;</span>duDayTimeFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>DT</var>) &#8594; decimal number
<div class="defindent">Maps a <a href="#nt-duDTFrag" shape="rect"><i>duDayTimeFrag</i></a> into a decimal number, which is the potential value of the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> property of a <a href="#duration" shape="rect">duration</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>DT</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-duDTFrag" shape="rect"><i>duDayTimeFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a nonnegative decimal number</div>
<b>Algorithm:</b>
<div class="defindent"><var>DT</var> necesarily consists of an instance
<var>D</var> of <a href="#nt-duDaFrag" shape="rect"><i>duDayFrag</i></a> and/or an instance <var>T</var> of
<a href="#nt-duTFrag" shape="rect"><i>duTimeFrag</i></a>.</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>d</var> be <a href="#f-duDaMap" shape="rect"><i><span class="arrow">&#183;</span>duDayFragmentMap<span class="arrow">&#183;</span></i></a>(<var>D</var>)
(or 0 if <var>D</var> is not present) and</div></li><li><div class="p"><var>t</var> be <a href="#f-duTMap" shape="rect"><i><span class="arrow">&#183;</span>duTimeFragmentMap<span class="arrow">&#183;</span></i></a>(<var>T</var>)
(or 0 if <var>T</var> is not present).</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">Return&#160; 86400&#160;&#215;&#160;<var>d</var>&#160;+&#160;<var>t</var>&#160;.</div>
</div></div>
<div class="defset">
<div class="not_aux">
<div class="defset-head">The <a href="#duration" shape="rect">duration</a> Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-durationMap" id="f-durationMap" shape="rect"><i><span class="arrow">&#183;</span>durationMap<span class="arrow">&#183;</span></i></a></b> (<var>DUR</var>) &#8594; <a href="#duration" shape="rect">duration</a>
<div class="defindent">Separates the <a href="#nt-durationRep" shape="rect"><i>durationLexicalRep</i></a> into the month part and the seconds part,
then maps them into the <a href="#vp-du-month" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> and <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> of the
<a href="#duration" shape="rect">duration</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>DUR</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-durationRep" shape="rect"><i>durationLexicalRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a complete <a href="#duration" shape="rect">duration</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>DUR</var> consists of possibly a
leading '<code>-</code>', followed by
'<code>P</code>' and then an instance <var>Y</var> of <a href="#nt-duYMFrag" shape="rect"><i>duYearMonthFrag</i></a>
and/or an instance <var>D</var> of
<a href="#nt-duDTFrag" shape="rect"><i>duDayTimeFrag</i></a>:</div>
<div class="defindent">Return a <a href="#duration" shape="rect">duration</a> whose
<ul><li><div class="p"><a href="#vp-du-month" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> value is
<ul><li><div class="p">0&#160;&#160; if <var>Y</var> is not present,</div></li><li><div class="p">&#8722;<a href="#f-duYMMap" shape="rect"><i><span class="arrow">&#183;</span>duYearMonthFragmentMap<span class="arrow">&#183;</span></i></a>(<var>Y</var>)&#160;&#160; if
both '<code>-</code>' and <var>Y</var> are present, and</div></li><li><div class="p"><a href="#f-duYMMap" shape="rect"><i><span class="arrow">&#183;</span>duYearMonthFragmentMap<span class="arrow">&#183;</span></i></a>(<var>Y</var>)&#160;&#160; otherwise.</div></li></ul></div></li></ul>
and whose
<ul><li><div class="p"><a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> value is
<ul><li><div class="p">0&#160;&#160; if <var>D</var> is not present,</div></li><li><div class="p">&#8722;<a href="#f-duDTMap" shape="rect"><i><span class="arrow">&#183;</span>duDayTimeFragmentMap<span class="arrow">&#183;</span></i></a>(<var>D</var>)&#160;&#160; if
both '<code>-</code>' and <var>D</var> are present, and</div></li><li><div class="p"><a href="#f-duDTMap" shape="rect"><i><span class="arrow">&#183;</span>duDayTimeFragmentMap<span class="arrow">&#183;</span></i></a>(<var>D</var>)&#160;&#160; otherwise.</div></li></ul></div></li></ul>
</div>
</div></div>
<div class="defset">
<div class="not_aux">
<div class="defset-head">The <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-yearMonthDurationMap" id="f-yearMonthDurationMap" shape="rect"><i><span class="arrow">&#183;</span>yearMonthDurationMap<span class="arrow">&#183;</span></i></a></b> (<var>YM</var>) &#8594; <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a>
<div class="defindent">Maps the lexical representation into the <a href="#vp-du-month" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> of a
<a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> value.&#160; (A
<a href="#yearMonthDuration" shape="rect">yearMonthDuration</a>'s <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> is always
zero.)&#160; <a href="#f-yearMonthDurationMap" shape="rect"><i><span class="arrow">&#183;</span>yearMonthDurationMap<span class="arrow">&#183;</span></i></a> is a restriction of <a href="#f-durationMap" shape="rect"><i><span class="arrow">&#183;</span>durationMap<span class="arrow">&#183;</span></i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>YM</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-yearMonthDurationRep" shape="rect"><i>yearMonthDurationLexicalRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a complete <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>YM</var> necessarily consists of
an optional leading '<code>-</code>', followed by
'<code>P</code>' and then an instance <var>Y</var> of
<a href="#nt-duYMFrag" shape="rect"><i>duYearMonthFrag</i></a>:</div>
<div class="defindent">Return a <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> whose
<ul><li><div class="p"><a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> value is
<ul><li><div class="p">&#8722;<a href="#f-duYMMap" shape="rect"><i><span class="arrow">&#183;</span>duYearMonthFragmentMap<span class="arrow">&#183;</span></i></a>(<var>Y</var>)&#160;&#160; if '<code>-</code>' is
present in <var>YM</var> and</div></li><li><div class="p"><a href="#f-duYMMap" shape="rect"><i><span class="arrow">&#183;</span>duYearMonthFragmentMap<span class="arrow">&#183;</span></i></a>(<var>Y</var>)&#160;&#160; otherwise, and</div></li></ul>
</div></li><li><div class="p"><a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> value is (necessarily) 0.</div></li></ul>
</div>
</div></div>
<div class="defset">
<div class="not_aux">
<div class="defset-head">The <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-dayTimeDurationMap" id="f-dayTimeDurationMap" shape="rect"><i><span class="arrow">&#183;</span>dayTimeDurationMap<span class="arrow">&#183;</span></i></a></b> (<var>DT</var>) &#8594; <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a>
<div class="defindent">Maps the lexical representation into the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> of a
<a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> value.&#160; (A
<a href="#dayTimeDuration" shape="rect">dayTimeDuration</a>'s <a href="#vp-du-month" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> is always
zero.)&#160; <a href="#f-dayTimeDurationMap" shape="rect"><i><span class="arrow">&#183;</span>dayTimeDurationMap<span class="arrow">&#183;</span></i></a> is a restriction of <a href="#f-durationMap" shape="rect"><i><span class="arrow">&#183;</span>durationMap<span class="arrow">&#183;</span></i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>DT</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a complete <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>DT</var> necessarily
consists of possibly a leading '<code>-</code>', followed by
'<code>P</code>' and then an instance <var>D</var> of
<a href="#nt-duDTFrag" shape="rect"><i>duDayTimeFrag</i></a>:</div>
<div class="defindent">Return a <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> whose
<ul><li><div class="p"><a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> value is (necessarily) 0, and</div></li><li><div class="p"><a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> value is
<ul><li><div class="p">&#8722;<a href="#f-duDTMap" shape="rect"><i><span class="arrow">&#183;</span>duDayTimeFragmentMap<span class="arrow">&#183;</span></i></a>(<var>D</var>)&#160;&#160; if '<code>-</code>' is
present in <var>DT</var> and</div></li><li><div class="p"><a href="#f-duDTMap" shape="rect"><i><span class="arrow">&#183;</span>duDayTimeFragmentMap<span class="arrow">&#183;</span></i></a>(<var>D</var>)&#160;&#160; otherwise.</div></li></ul></div></li></ul>
</div>
</div></div>
<div class="defset">
<div class="aux">
<div class="defset-head">Auxiliary <a href="#duration" shape="rect">duration</a>-related Functions
Producing Representation Fragments</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-duYMCan" id="f-duYMCan" shape="rect"><i><span class="arrow">&#183;</span>duYearMonthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>ym</var>) &#8594; <a href="#nt-duYMFrag" shape="rect"><i>duYearMonthFrag</i></a>
<div class="defindent">Maps a nonnegative integer, presumably the absolute value of the <a href="#vp-du-month" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> of a <a href="#duration" shape="rect">duration</a> value, to a <a href="#nt-duYMFrag" shape="rect"><i>duYearMonthFrag</i></a>, a fragment of a <a href="#duration" shape="rect">duration</a> <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>ym</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching <a href="#nt-duYMFrag" shape="rect"><i>duYearMonthFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>y</var> be&#160; <var>ym</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;12&#160;, and</div></li><li><div class="p"><var>m</var> be&#160; <var>ym</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;12&#160;,</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>y</var>)&#160;&amp; '<code>Y</code>'&#160;&amp; <a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>m</var>)&#160;&amp; '<code>M</code>'&#160;&#160;
when neither <var>y</var> nor <var>m</var> is zero,</div></li><li><div class="p"><a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>y</var>)&#160;&amp; '<code>Y</code>'&#160;&#160;
when <var>y</var> is not zero but <var>m</var> is, and</div></li><li><div class="p">&#160;<a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>m</var>)&#160;&amp; '<code>M</code>'&#160;&#160;
when <var>y</var> is zero.</div></li></ul>
</div>
<div class="deftop"><b><a name="f-duDCan" id="f-duDCan" shape="rect"><i><span class="arrow">&#183;</span>duDayCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>d</var>) &#8594; <a href="#nt-duDaFrag" shape="rect"><i>duDayFrag</i></a>
<div class="defindent">Maps a nonnegative integer, presumably the day normalized value from the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> of a <a href="#duration" shape="rect">duration</a> value, to a <a href="#nt-duDaFrag" shape="rect"><i>duDayFrag</i></a>, a fragment of a <a href="#duration" shape="rect">duration</a> <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>d</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching <a href="#nt-duDaFrag" shape="rect"><i>duDayFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>d</var>)&#160;&amp; '<code>D</code>'&#160;&#160;
when <var>d</var> is not zero, and</div></li><li><div class="p">the empty string ('')&#160;&#160; when <var>d</var> is zero.</div></li></ul>
</div>
<div class="deftop"><b><a name="f-duHCan" id="f-duHCan" shape="rect"><i><span class="arrow">&#183;</span>duHourCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>h</var>) &#8594; <a href="#nt-duHrFrag" shape="rect"><i>duHourFrag</i></a>
<div class="defindent">Maps a nonnegative integer, presumably the hour normalized value from the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> of a <a href="#duration" shape="rect">duration</a> value, to a <a href="#nt-duHrFrag" shape="rect"><i>duHourFrag</i></a>, a fragment of a <a href="#duration" shape="rect">duration</a> <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>h</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching <a href="#nt-duHrFrag" shape="rect"><i>duHourFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>h</var>)&#160;&amp; '<code>H</code>'&#160;&#160;
when <var>h</var> is not zero, and</div></li><li><div class="p">the empty string ('')&#160;&#160; when <var>h</var> is zero.</div></li></ul>
</div>
<div class="deftop"><b><a name="f-duMCan" id="f-duMCan" shape="rect"><i><span class="arrow">&#183;</span>duMinuteCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>m</var>) &#8594; <a href="#nt-duMiFrag" shape="rect"><i>duMinuteFrag</i></a>
<div class="defindent">Maps a nonnegative integer, presumably the minute normalized value from the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> of a <a href="#duration" shape="rect">duration</a> value, to a <a href="#nt-duMiFrag" shape="rect"><i>duMinuteFrag</i></a>, a fragment of a <a href="#duration" shape="rect">duration</a> <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>m</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching <a href="#nt-duMiFrag" shape="rect"><i>duMinuteFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>m</var>)&#160;&amp; '<code>M</code>'&#160;&#160;
when <var>m</var> is not zero, and</div></li><li><div class="p">the empty string ('')&#160;&#160; when <var>m</var> is zero.</div></li></ul>
</div>
<div class="deftop"><b><a name="f-duSCan" id="f-duSCan" shape="rect"><i><span class="arrow">&#183;</span>duSecondCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>s</var>) &#8594; <a href="#nt-duSeFrag" shape="rect"><i>duSecondFrag</i></a>
<div class="defindent">Maps a nonnegative decimal number, presumably the second normalized value from the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> of a <a href="#duration" shape="rect">duration</a> value, to a <a href="#nt-duSeFrag" shape="rect"><i>duSecondFrag</i></a>, a fragment of a <a href="#duration" shape="rect">duration</a> <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>s</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative decimal number</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-duSeFrag" shape="rect"><i>duSecondFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-unsNoDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>s</var>)&#160;&amp; '<code>S</code>'&#160;
when <var>s</var> is a non-zero integer,</div></li><li><div class="p"><a href="#f-unsDecCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>s</var>)&#160;&amp; '<code>S</code>'&#160;
when <var>s</var> is not an integer, and</div></li><li><div class="p">the empty string ('') when <var>s</var> is zero.</div></li></ul>
</div>
<div class="deftop"><b><a name="f-duTCan" id="f-duTCan" shape="rect"><i><span class="arrow">&#183;</span>duTimeCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>h</var>,&#160;<var>m</var>,&#160;<var>s</var>) &#8594; <a href="#nt-duTFrag" shape="rect"><i>duTimeFrag</i></a>
<div class="defindent">Maps three nonnegative numbers, presumably the hour, minute, and second normalized values from a <a href="#duration" shape="rect">duration</a>'s <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a>, to a <a href="#nt-duTFrag" shape="rect"><i>duTimeFrag</i></a>, a fragment of a <a href="#duration" shape="rect">duration</a> <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>h</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>m</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>s</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative decimal number</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching <a href="#nt-duTFrag" shape="rect"><i>duTimeFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p">'<code>T</code>'&#160;&amp;
<a href="#f-duHCan" shape="rect"><i><span class="arrow">&#183;</span>duHourCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>h</var>)&#160;&amp;
<a href="#f-duMCan" shape="rect"><i><span class="arrow">&#183;</span>duMinuteCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>m</var>)&#160;&amp;
<a href="#f-duSCan" shape="rect"><i><span class="arrow">&#183;</span>duSecondCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>s</var>)&#160;&#160;
when <var>h</var>, <var>m</var>, and <var>s</var> are not all zero, and</div></li><li><div class="p">the empty string ('') when all arguments are zero.</div></li></ul>
</div>
<div class="deftop"><b><a name="f-duDTCan" id="f-duDTCan" shape="rect"><i><span class="arrow">&#183;</span>duDayTimeCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>ss</var>) &#8594; <a href="#nt-duDTFrag" shape="rect"><i>duDayTimeFrag</i></a>
<div class="defindent">Maps a nonnegative decimal number, presumably the absolute value of the <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> of a <a href="#duration" shape="rect">duration</a> value, to a <a href="#nt-duDTFrag" shape="rect"><i>duDayTimeFrag</i></a>, a fragment of a <a href="#duration" shape="rect">duration</a> <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>ss</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative decimal number</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-duDTFrag" shape="rect"><i>duDayTimeFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>d</var> is&#160;
<var>ss</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;86400&#160;,</div></li><li><div class="p"><var>h</var> is&#160;
(<var>ss</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;86400)&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;3600&#160;,</div></li><li><div class="p"><var>m</var> is&#160;
(<var>ss</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;3600)&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;60&#160;, and</div></li><li><div class="p"><var>s</var> is&#160;
<var>ss</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;60&#160;,</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-duDCan" shape="rect"><i><span class="arrow">&#183;</span>duDayCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>d</var>)&#160;&amp;
<a href="#f-duTCan" shape="rect"><i><span class="arrow">&#183;</span>duTimeCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>h</var>,&#160;<var>m</var>,&#160;<var>s</var>)&#160;&#160;
when <var>ss</var> is not zero and</div></li><li><div class="p">'<code>T0S</code>'&#160;&#160; when <var>ss</var> is zero.</div></li></ul>
</div>
</div></div>
<div class="defset">
<div class="not_aux">
<div class="defset-head">The <a href="#duration" shape="rect">duration</a> Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-durationCanMap" id="f-durationCanMap" shape="rect"><i><span class="arrow">&#183;</span>durationCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>v</var>) &#8594; <a href="#nt-durationRep" shape="rect"><i>durationLexicalRep</i></a>
<div class="defindent">Maps a <a href="#duration" shape="rect">duration</a>'s property values to <a href="#nt-durationRep" shape="rect"><i>durationLexicalRep</i></a> fragments and combines the fragments into a complete <a href="#nt-durationRep" shape="rect"><i>durationLexicalRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>v</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a complete <a href="#duration" shape="rect">duration</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-durationRep" shape="rect"><i>durationLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>m</var> be <var>v</var>'s <a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a>,</div></li><li><div class="p"><var>s</var> be <var>v</var>'s <a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a>, and</div></li><li><div class="p"><var>sgn</var> be '<code>-</code>' if <var>m</var> or
<var>s</var> is negative and
the empty string ('') otherwise.</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">Return
<ul><li><div class="p"><var>sgn</var>&#160;&amp; '<code>P</code>'&#160;&amp;
<a href="#f-duYMCan" shape="rect"><i><span class="arrow">&#183;</span>duYearMonthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(|&#160;<var>m</var>&#160;|)&#160;&amp;
<a href="#f-duDTCan" shape="rect"><i><span class="arrow">&#183;</span>duDayTimeCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(|&#160;<var>s</var>&#160;|)&#160;&#160;&#160;
when neither <var>m</var> nor <var>s</var> is zero,</div></li><li><div class="p"><var>sgn</var>&#160;&amp; '<code>P</code>'&#160;&amp;
<a href="#f-duYMCan" shape="rect"><i><span class="arrow">&#183;</span>duYearMonthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(|&#160;<var>m</var>&#160;|)&#160;&#160;&#160;
when <var>m</var> is not zero but <var>s</var> is, and</div></li><li><div class="p"><var>sgn</var>&#160;&amp; '<code>P</code>'&#160;&amp;
<a href="#f-duDTCan" shape="rect"><i><span class="arrow">&#183;</span>duDayTimeCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(|&#160;<var>s</var>&#160;|)&#160;&#160;&#160;
when <var>m</var> is zero.</div></li></ul>
</div>
</div></div>
<div class="defset">
<div class="not_aux">
<div class="defset-head">The <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-yearMonthDurationCanMap" id="f-yearMonthDurationCanMap" shape="rect"><i><span class="arrow">&#183;</span>yearMonthDurationCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>ym</var>) &#8594; <a href="#nt-yearMonthDurationRep" shape="rect"><i>yearMonthDurationLexicalRep</i></a>
<div class="defindent">Maps a <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a>'s <a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> value to
a <a href="#nt-yearMonthDurationRep" shape="rect"><i>yearMonthDurationLexicalRep</i></a>.&#160; (The <a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> value is necessarily zero and is ignored.)&#160; <a href="#f-yearMonthDurationCanMap" shape="rect"><i><span class="arrow">&#183;</span>yearMonthDurationCanonicalMap<span class="arrow">&#183;</span></i></a> is a restriction of <a href="#f-durationCanMap" shape="rect"><i><span class="arrow">&#183;</span>durationCanonicalMap<span class="arrow">&#183;</span></i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>ym</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a complete <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-yearMonthDurationRep" shape="rect"><i>yearMonthDurationLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>m</var> be <var>ym</var>'s <a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> and</div></li><li><div class="p"><var>sgn</var> be '<code>-</code>' if <var>m</var> is negative and
the empty string ('') otherwise.</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">
Return&#160; <var>sgn</var>&#160;&amp; '<code>P</code>'&#160;&amp;
<a href="#f-duYMCan" shape="rect"><i><span class="arrow">&#183;</span>duYearMonthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(|&#160;<var>m</var>&#160;|)&#160;.
</div>
</div></div>
<div class="defset">
<div class="not_aux">
<div class="defset-head">The <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-dayTimeDurationCanMap" id="f-dayTimeDurationCanMap" shape="rect"><i><span class="arrow">&#183;</span>dayTimeDurationCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>dt</var>) &#8594; <a href="#nt-dayTimeDurationRep" shape="rect"><i>dayTimeDurationLexicalRep</i></a>
<div class="defindent">Maps a <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a>'s <a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> value to
a <a href="#nt-dayTimeDurationRep" shape="rect"><i>dayTimeDurationLexicalRep</i></a>.&#160; (The <a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> value is necessarily zero and is ignored.)&#160; <a href="#f-dayTimeDurationCanMap" shape="rect"><i><span class="arrow">&#183;</span>dayTimeDurationCanonicalMap<span class="arrow">&#183;</span></i></a> is a restriction of <a href="#f-durationCanMap" shape="rect"><i><span class="arrow">&#183;</span>durationCanonicalMap<span class="arrow">&#183;</span></i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>dt</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a complete <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-dayTimeDurationRep" shape="rect"><i>dayTimeDurationLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>s</var> be <var>dt</var>'s <a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> and</div></li><li><div class="p"><var>sgn</var> be '<code>-</code>' if <var>s</var> is negative and
the empty string ('') otherwise.</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">Return&#160;<var>sgn</var>&#160;&amp; '<code>P</code>'&#160;&amp;
<a href="#f-duYMCan" shape="rect"><i><span class="arrow">&#183;</span>duYearMonthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(|&#160;<var>s</var>&#160;|)&#160;.
</div>
</div></div>
</div></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#sec-duration-functions" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#sec-misc-lexmaps" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="sec-dt-functions" id="sec-dt-functions" shape="rect"></a>E.3 Date/time-related Definitions</h3><div class="localToc">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;E.3.1 <a href="#sec-normalization" shape="rect">Normalization of property values</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;E.3.2 <a href="#sec-aux-functions" shape="rect">Auxiliary Functions</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;E.3.3 <a href="#sec-dt-arith" shape="rect">Adding durations to dateTimes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;E.3.4 <a href="#sec-timeontimeline" shape="rect">Time on timeline</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;E.3.5 <a href="#sec-dt-lexmaps" shape="rect">Lexical mappings</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;E.3.6 <a href="#sec-dt-canmaps" shape="rect">Canonical Mappings</a><br clear="none" />
</div><div class="div3">
<h4><a name="sec-normalization" id="sec-normalization" shape="rect"></a>E.3.1 Normalization of property values</h4><div class="block">When adding and subtracting numbers from date/time properties, the
immediate results may not conform to the limits specified.&#160;
Accordingly, the following procedures are used to
"normalize" potential property values to
corresponding values that do conform to the appropriate limits.&#160;
Normalization is required when dealing with time zone offset changes (as when
converting to
<a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a>
from
"local"
values) and when
adding <a href="#duration" shape="rect">duration</a> values to or subtracting them from
<a href="#dateTime" shape="rect">dateTime</a> values.
<div class="defset">
<div class="aux">
<div class="defset-head">Date/time Datatype Normalizing Procedures</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-dt-normMo" id="f-dt-normMo" shape="rect"><i><span class="arrow">&#183;</span>normalizeMonth<span class="arrow">&#183;</span></i></a></b> (<var>yr</var>,&#160;<var>mo</var>)
<div class="defindent">If month (<var>mo</var>) is out of range,
adjust month and year (<var>yr</var>) accordingly;
otherwise, make no change.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>yr</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>mo</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
</tbody></table></div>
<b>Algorithm:</b>
<div class="defindent">
<ol class="enumar"><li><div class="p">
Add&#160; (<var>mo</var>&#160;&#8722;&#160;1)&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;12&#160; to <var>yr</var>.
</div></li><li><div class="p">
Set <var>mo</var> to&#160;
(<var>mo</var>&#160;&#8722;&#160;1)&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;12&#160;+&#160;1&#160;.
</div></li></ol>
</div>
<div class="deftop"><b><a name="f-dt-normDa" id="f-dt-normDa" shape="rect"><i><span class="arrow">&#183;</span>normalizeDay<span class="arrow">&#183;</span></i></a></b> (<var>yr</var>,&#160;<var>mo</var>,&#160;<var>da</var>)
<div class="defindent">If
month (<var>mo</var>) is out of range, or day (<var>da</var>) is
out of range for the appropriate month, then adjust values accordingly,
otherwise make no change.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>yr</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>mo</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>da</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
</tbody></table></div>
<b>Algorithm:</b>
<div class="defindent">
<ol class="enumar"><li><div class="p"><a href="#f-dt-normMo" shape="rect"><i><span class="arrow">&#183;</span>normalizeMonth<span class="arrow">&#183;</span></i></a>(<var>yr</var>,&#160;<var>mo</var>)</div></li><li><div class="p">Repeat until <var>da</var> is positive and not greater than
<a href="#f-daysInMonth" shape="rect"><i><span class="arrow">&#183;</span>daysInMonth<span class="arrow">&#183;</span></i></a>(<var>yr</var>,&#160;<var>mo</var>):
<ol class="enumla"><li><div class="p">If <var>da</var> exceeds
<a href="#f-daysInMonth" shape="rect"><i><span class="arrow">&#183;</span>daysInMonth<span class="arrow">&#183;</span></i></a>(<var>yr</var>,&#160;<var>mo</var>)
then:
<ol class="enumlr"><li><div class="p">Subtract that limit from <var>da</var>.</div></li><li><div class="p">Add 1 to <var>mo</var>.</div></li><li><div class="p"><a href="#f-dt-normMo" shape="rect"><i><span class="arrow">&#183;</span>normalizeMonth<span class="arrow">&#183;</span></i></a>(<var>yr</var>,&#160;<var>mo</var>)</div></li></ol>
</div></li><li><div class="p">If <var>da</var> is not positive then:
<ol class="enumlr"><li><div class="p">Subtract 1 from <var>mo</var>.</div></li><li><div class="p"><a href="#f-dt-normMo" shape="rect"><i><span class="arrow">&#183;</span>normalizeMonth<span class="arrow">&#183;</span></i></a>(<var>yr</var>,&#160;<var>mo</var>)</div></li><li><div class="p">Add the new upper limit from the table to <var>da</var>.</div></li></ol>
</div></li></ol>
</div></li></ol>
</div>
<div class="deftop"><b><a name="f-dt-normMi" id="f-dt-normMi" shape="rect"><i><span class="arrow">&#183;</span>normalizeMinute<span class="arrow">&#183;</span></i></a></b> (<var>yr</var>,&#160;<var>mo</var>,&#160;<var>da</var>,&#160;<var>hr</var>,&#160;<var>mi</var>)
<div class="defindent">Normalizes minute, hour, month, and year values to values that obey the appropriate constraints.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>yr</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>mo</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>da</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>hr</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>mi</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
</tbody></table></div>
<b>Algorithm:</b>
<div class="defindent">
<ol class="enumar"><li><div class="p">Add &#160; <var>mi</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;60&#160; to <var>hr</var>.</div></li><li><div class="p">Set <var>mi</var> to&#160; <var>mi</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;60&#160;.</div></li><li><div class="p">Add&#160; <var>hr</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;24&#160; to <var>da</var>.</div></li><li><div class="p">Set <var>hr</var> to&#160; <var>hr</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;24&#160;.</div></li><li><div class="p"><a href="#f-dt-normDa" shape="rect"><i><span class="arrow">&#183;</span>normalizeDay<span class="arrow">&#183;</span></i></a>(<var>yr</var>,&#160;<var>mo</var>,&#160;<var>da</var>).</div></li></ol>
</div>
<div class="deftop"><b><a name="f-dt-normSe" id="f-dt-normSe" shape="rect"><i><span class="arrow">&#183;</span>normalizeSecond<span class="arrow">&#183;</span></i></a></b> (<var>yr</var>,&#160;<var>mo</var>,&#160;<var>da</var>,&#160;<var>hr</var>,&#160;<var>mi</var>,&#160;<var>se</var>)
<div class="defindent">Normalizes second, minute, hour, month, and year values to values that obey the appropriate
constraints.&#160; (This algorithm ignores leap seconds.)
</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>yr</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>mo</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>da</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>hr</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>mi</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>se</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a decimal number</td></tr>
</tbody></table></div>
<b>Algorithm:</b>
<div class="defindent">
<ol class="enumar"><li><div class="p">Add&#160; <var>se</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;60&#160; to <var>mi</var>.</div></li><li><div class="p">Set <var>se</var> to
<var>se</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;60&#160;.</div></li><li><div class="p"><a href="#f-dt-normMi" shape="rect"><i><span class="arrow">&#183;</span>normalizeMinute<span class="arrow">&#183;</span></i></a>(<var>yr</var>,&#160;<var>mo</var>,&#160;<var>da</var>,&#160;<var>hr</var>,&#160;<var>mi</var>).</div></li></ol>
</div>
</div></div>
</div></div><div class="div3">
<h4><a name="sec-aux-functions" id="sec-aux-functions" shape="rect"></a>E.3.2 Auxiliary Functions</h4><div class="block">
<div class="defset">
<div class="not_aux">
<div class="defset-head">Date/time Auxiliary Functions</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-daysInMonth" id="f-daysInMonth" shape="rect"><i><span class="arrow">&#183;</span>daysInMonth<span class="arrow">&#183;</span></i></a></b> (<var>y</var>,&#160;<var>m</var>) &#8594; integer
<div class="defindent">Returns the number of the last day of the month
for any combination of year and month.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>y</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an <a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a> integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>m</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer between 1 and 12</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">between 28 and 31 inclusive</div>
<b>Algorithm:</b>
<div class="defindent">
Return:
<ul><li><div class="p">28&#160;&#160; when <var>m</var> is 2 and
<var>y</var> is not evenly divisible by 4,
or is evenly divisible by 100 but not by 400,
or is <b><i>absent</i></b>,</div></li><li><div class="p">29&#160;&#160; when <var>m</var> is 2 and
<var>y</var> is evenly divisible by 400,
or is evenly divisible by 4 but not by 100,</div></li><li><div class="p">30&#160;&#160; when <var>m</var> is 4, 6, 9, or 11,</div></li><li><div class="p">31&#160;&#160; otherwise (<var>m</var> is 1, 3, 5, 7, 8, 10, or 12)</div></li></ul>
</div>
<div class="deftop"><b><a name="p-setDTFromRaw" id="p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a></b> (<var>Yr</var>,&#160;<var>Mo</var>,&#160;<var>Da</var>,&#160;<var>Hr</var>,&#160;<var>Mi</var>,&#160;<var>Se</var>,&#160;<var>Tz</var>) &#8594; an instance of the <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>
<div class="defindent">Returns an instance of the <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> with
property values as specified in the arguments. If an argument is
omitted, the corresponding property is set to <b><i>absent</i></b>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>Yr</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an <a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>
integer</td></tr>
<tr><td rowspan="1" colspan="1"><var>Mo</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an <a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>
integer between 1 and 12 inclusive</td></tr>
<tr><td rowspan="1" colspan="1"><var>Da</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an <a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>
integer between 1 and 31 inclusive</td></tr>
<tr><td rowspan="1" colspan="1"><var>Hr</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an <a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>
integer between 0 and 24 inclusive</td></tr>
<tr><td rowspan="1" colspan="1"><var>Mi</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an <a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>
integer between 0 and 59 inclusive</td></tr>
<tr><td rowspan="1" colspan="1"><var>Se</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an <a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>
decimal number greater than or equal to 0 and less than
60</td></tr>
<tr><td rowspan="1" colspan="1"><var>Tz</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an <a href="#dt-optional" class="termref" shape="rect"><span class="arrow">&#183;</span>optional<span class="arrow">&#183;</span></a>
integer
between &#8722;840 and 840 inclusive.</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent"> </div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>dt</var> be an instance of the <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a></div></li><li><div class="p"><var>yr</var>
be <var>Yr</var> when <var>Yr</var> is not <b><i>absent</i></b>, otherwise 1</div></li><li><div class="p"><var>mo</var>
be <var>Mo</var>when <var>Mo</var> is
not <b><i>absent</i></b>, otherwise 1</div></li><li><div class="p"><var>da</var>
be <var>Da</var>when <var>Da</var> is
not <b><i>absent</i></b>, otherwise 1</div></li><li><div class="p"><var>hr</var>
be <var>Hr</var>when <var>Hr</var> is
not <b><i>absent</i></b>, otherwise 0</div></li><li><div class="p"><var>mi</var>
be <var>Mi</var>when <var>Mi</var> is
not <b><i>absent</i></b>, otherwise 0</div></li><li><div class="p"><var>se</var>
be <var>Se</var>when <var>Se</var> is
not <b><i>absent</i></b>, otherwise 0</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">
<ol class="enumar"><li><div class="p"><a href="#f-dt-normSe" shape="rect"><i><span class="arrow">&#183;</span>normalizeSecond<span class="arrow">&#183;</span></i></a>(<var>yr</var>,&#160;<var>mo</var>,&#160;<var>da</var>,&#160;<var>hr</var>,&#160;<var>mi</var>,&#160;<var>se</var>)</div></li><li><div class="p">Set the <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> property of <var>dt</var> to <b><i>absent</i></b>
when <var>Yr</var> is <b><i>absent</i></b>, otherwise <var>yr</var>.</div></li><li><div class="p">Set the <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a> property of <var>dt</var> to <b><i>absent</i></b>
when <var>Mo</var> is <b><i>absent</i></b>, otherwise <var>mo</var>.</div></li><li><div class="p">Set the <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> property of <var>dt</var> to <b><i>absent</i></b>
when <var>Da</var> is <b><i>absent</i></b>, otherwise <var>da</var>.</div></li><li><div class="p">Set the <a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a> property of <var>dt</var> to <b><i>absent</i></b>
when <var>Hr</var> is <b><i>absent</i></b>, otherwise <var>hr</var>.</div></li><li><div class="p">Set the <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a> property of <var>dt</var> to <b><i>absent</i></b>
when <var>Mi</var> is <b><i>absent</i></b>, otherwise <var>mi</var>.</div></li><li><div class="p">Set the <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> property of <var>dt</var> to <b><i>absent</i></b>
when <var>Se</var> is <b><i>absent</i></b>, otherwise <var>se</var>.</div></li><li><div class="p">Set the <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> property of <var>dt</var> to <var>Tz</var></div></li><li><div class="p">Return <var>dt</var>.</div></li></ol>
</div>
</div></div>
</div></div><div class="div3">
<h4><a name="sec-dt-arith" id="sec-dt-arith" shape="rect"></a>E.3.3 Adding durations to dateTimes</h4><p id="new_g1">
Given a <a href="#dateTime" shape="rect">dateTime</a> <var>S</var> and a <a href="#duration" shape="rect">duration</a>
<var>D</var>, function
<a href="#vp-dt-dateTimePlusDuration" shape="rect"><i><span class="arrow">&#183;</span>dateTimePlusDuration<span class="arrow">&#183;</span></i></a>
specifies how to compute a <a href="#dateTime" shape="rect">dateTime</a> <var>E</var>, where
<var>E</var> is the end of the time period with start <var>S</var> and
duration <var>D</var> i.e. <var>E</var> = <var>S</var> +
<var>D</var>.&#160; Such computations are used, for example, to
determine whether a <a href="#dateTime" shape="rect">dateTime</a> is within a specific time
period.&#160; This
algorithm
can also be applied,
when applications need the operation,
to the addition of <a href="#duration" shape="rect">duration</a>s to the datatypes
<a href="#date" shape="rect">date</a>, <a href="#gYearMonth" shape="rect">gYearMonth</a>, <a href="#gYear" shape="rect">gYear</a>,
<a href="#gDay" shape="rect">gDay</a> and <a href="#gMonth" shape="rect">gMonth</a>,
each of which can be viewed as
denoting a set of
<a href="#dateTime" shape="rect">dateTime</a>s. In such cases, the addition is made to the
first or starting <a href="#dateTime" shape="rect">dateTime</a> in the set.&#160;
Note that the extension of this
algorithm to types other than <a href="#dateTime" shape="rect">dateTime</a> is not
needed for schema-validity assessment.
</p><p id="new_g5">
Essentially, this calculation adds the
<a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> and
<a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> properties of the
<a href="#duration" shape="rect">duration</a> value separately to the
<a href="#dateTime" shape="rect">dateTime</a> value. The
<a href="#vp-du-month" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a>
value
is added to the starting <a href="#dateTime" shape="rect">dateTime</a>
value first. If the
day is out of range for the new
month value, it is <em>pinned</em>
to be within range. Thus April 31 turns into April 30. Then the
<a href="#vp-du-second" class="vprop" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> value
is added. This latter addition can
cause the year,
month, day, hour, and minute to change.
</p><p id="new_g6">
Leap seconds are
ignored
by the computation. All calculations
use 60 seconds per minute.
</p><p id="new_g7">
Thus the addition of either PT1M or PT60S to any dateTime will always
produce the same result. This is a special definition of addition which
is designed to match common practice, and&#8212;most importantly&#8212;be stable
over time.
</p><p id="new_g8">
A definition that attempted to take leap-seconds into account would
need to be constantly updated, and could not predict the results of
future implementation's additions. The decision to introduce a leap
second in <a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a> is the responsibility of the
<a href="#IERS" shape="rect">[International Earth Rotation Service (IERS)]</a>. They make periodic
announcements as to when leap seconds are to be added, but this is not
known more than a year in advance. For more information on leap
seconds, see <a href="#USNavy" shape="rect">[U.S. Naval Observatory Time Service Department]</a>.
</p><div class="defset">
<div class="not_aux">
<div class="defset-head">Adding <a href="#duration" shape="rect">duration</a> to <a href="#dateTime" shape="rect">dateTime</a></div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-dt-dateTimePlusDuration" id="vp-dt-dateTimePlusDuration" shape="rect"><i><span class="arrow">&#183;</span>dateTimePlusDuration<span class="arrow">&#183;</span></i></a></b> (<var>du</var>,&#160;<var>dt</var>) &#8594; <a href="#dateTime" shape="rect">dateTime</a>
<div class="defindent">Adds a <a href="#duration" shape="rect">duration</a> to a <a href="#dateTime" shape="rect">dateTime</a> value, producing another <a href="#dateTime" shape="rect">dateTime</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>du</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#duration" shape="rect">duration</a>
value</td></tr>
<tr><td rowspan="1" colspan="1"><var>dt</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#dateTime" shape="rect">dateTime</a>
value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a <a href="#dateTime" shape="rect">dateTime</a>
value</div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>yr</var> be <var>dt</var>'s <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>,</div></li><li><div class="p"><var>mo</var> be <var>dt</var>'s <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>,</div></li><li><div class="p"><var>da</var> be <var>dt</var>'s <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>,</div></li><li><div class="p"><var>hr</var> be <var>dt</var>'s <a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>,</div></li><li><div class="p"><var>mi</var> be <var>dt</var>'s <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>, and</div></li><li><div class="p"><var>se</var> be <var>dt</var>'s <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a>.</div></li><li><div class="p"><var>tz</var> be <var>dt</var>'s <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>.</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">
<ol class="enumar"><li><div class="p">Add <var>du</var>'s <a href="#vp-du-month" shape="rect"><i><span class="arrow">&#183;</span>months<span class="arrow">&#183;</span></i></a> to <var>mo</var>.</div></li><li><div class="p"><a href="#f-dt-normMo" shape="rect"><i><span class="arrow">&#183;</span>normalizeMonth<span class="arrow">&#183;</span></i></a>(<var>yr</var>,&#160;<var>mo</var>). (I.e., carry any
over- or underflow, adjust month.)</div></li><li><div class="p">Set <var>da</var>
to&#160; min(<var>da</var>,&#160;<a href="#f-daysInMonth" shape="rect"><i><span class="arrow">&#183;</span>daysInMonth<span class="arrow">&#183;</span></i></a>(<var>yr</var>,&#160;<var>mo</var>)).
(I.e., <em>pin</em> the value if necessary.)</div></li><li><div class="p">Add <var>du</var>'s <a href="#vp-du-second" shape="rect"><i><span class="arrow">&#183;</span>seconds<span class="arrow">&#183;</span></i></a> to <var>se</var>.</div></li><li><div class="p"><a href="#f-dt-normSe" shape="rect"><i><span class="arrow">&#183;</span>normalizeSecond<span class="arrow">&#183;</span></i></a>(<var>yr</var>,&#160;<var>mo</var>,&#160;<var>da</var>,&#160;<var>hr</var>,&#160;<var>mi</var>,&#160;<var>se</var>).
(I.e., carry over- or underflow of seconds up to minutes, hours, etc.)
</div></li><li><div class="p">Return <a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<var>yr</var>, <var>mo</var>, <var>da</var>,
<var>hr</var>, <var>mi</var>, <var>se</var>,
<var>tz</var>)
</div></li></ol>
</div>
</div></div><p>This algorithm may be applied to date/time types
other than <a href="#dateTime" shape="rect">dateTime</a>, by</p><ol class="enumar"><li><div class="p">For each <b><i>absent</i></b> property, supply the minimum legal value for that
property (1 for years, months, days, 0 for hours, minutes, seconds).</div></li><li><div class="p">Call the function.</div></li><li><div class="p">For each property <b><i>absent</i></b> in the initial value,
set the corresponding property in the result value to <b><i>absent</i></b>.</div></li></ol><p id="new_g11"><em>Examples:</em></p><table id="new_g12" border="1" cellspacing="0" cellpadding="4"><tbody><tr><th align="center" style="background-color: #FFFF99" rowspan="1" colspan="1">dateTime</th><th align="center" style="background-color: #FFFF99" rowspan="1" colspan="1">duration</th><th align="center" style="background-color: #FFFF99" rowspan="1" colspan="1">result</th></tr><tr><td align="center" rowspan="1" colspan="1">2000-01-12T12:13:14Z</td><td align="center" rowspan="1" colspan="1">P1Y3M5DT7H10M3.3S</td><td align="center" rowspan="1" colspan="1">2001-04-17T19:23:17.3Z</td></tr><tr><td align="center" rowspan="1" colspan="1">2000-01</td><td align="center" rowspan="1" colspan="1">-P3M</td><td align="center" rowspan="1" colspan="1">1999-10</td></tr><tr><td align="center" rowspan="1" colspan="1">2000-01-12</td><td align="center" rowspan="1" colspan="1">PT33H</td><td align="center" rowspan="1" colspan="1">2000-01-13</td></tr></tbody></table><div class="block">
Note that the addition defined by
<a href="#vp-dt-dateTimePlusDuration" shape="rect"><i><span class="arrow">&#183;</span>dateTimePlusDuration<span class="arrow">&#183;</span></i></a> differs from addition on
integers or real numbers in not being commutative.
The order of addition of durations to instants <em>is</em> significant.
For example, there are cases where:
<blockquote><blockquote><p>((dateTime + duration1) + duration2) != ((dateTime +
duration2) + duration1)</p></blockquote></blockquote>
</div><p id="new_g16"><em>Example:</em></p><ul><li><div class="p">
(2000-03-30 + P1D) + P1M = 2000-03-31 + P1M = 2000-<b>04-30</b></div></li><li><div class="p">
(2000-03-30 + P1M) + P1D = 2000-04-30 + P1D = 2000-<b>05-01</b></div></li></ul></div><div class="div3">
<h4><a name="sec-timeontimeline" id="sec-timeontimeline" shape="rect"></a>E.3.4 Time on timeline</h4><div class="defset">
<div class="not_aux">
<div class="defset-head">Time on Timeline for Date/time Seven-property
Model Datatypes</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-dt-timeOnTimeline" id="vp-dt-timeOnTimeline" shape="rect"><i><span class="arrow">&#183;</span>timeOnTimeline<span class="arrow">&#183;</span></i></a></b> (<var>dt</var>) &#8594; decimal number
<div class="defindent">Maps a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value to the decimal number
representing its position on the "time line".</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>dt</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>
value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a decimal number</div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<ul><li><div class="p"><var>yr</var> be
1971
when <var>dt</var>'s <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> is <b><i>absent</i></b>,
and&#160; <var>dt</var>'s
<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>&#160;&#8722;&#160;1&#160; otherwise,</div></li><li><div class="p"><var>mo</var> be 12 or
<var>dt</var>'s <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>&#160;, similarly,</div></li><li><div class="p"><var>da</var> be&#160;
<a href="#f-daysInMonth" shape="rect"><i><span class="arrow">&#183;</span>daysInMonth<span class="arrow">&#183;</span></i></a>(<var>yr</var>+1,&#160;<var>mo</var>)&#160;&#8722;&#160;1&#160;
or&#160; (<var>dt</var>'s
<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>)&#160;&#8722;&#160;1&#160;, similarly,</div></li><li><div class="p"><var>hr</var> be 0 or
<var>dt</var>'s <a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>&#160;,
similarly,</div></li><li><div class="p"><var>mi</var> be 0 or
<var>dt</var>'s <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>&#160;,
similarly,
and</div></li><li><div class="p"><var>se</var> be 0 or
<var>dt</var>'s <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a>&#160;,
similarly.</div></li></ul>
</td></tr></tbody></table></div>
<div class="defindent">
<ol class="enumar"><li><div class="p">Subtract <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> from <var>mi</var>&#160;&#160;
when <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> is not <b><i>absent</i></b>.</div></li><li><div class="p">(<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>)
<ol class="enumla"><li><div class="p">Set <var>ToTl</var> to&#160;
31536000&#160;&#215;&#160;<var>yr</var>&#160;.</div></li></ol></div></li><li><div class="p">(Leap-year Days, <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>, and <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>)
<ol class="enumla"><li><div class="p">Add&#160; 86400&#160;&#215;
(<var>yr</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;400&#160;&#8722;
<var>yr</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;100&#160;+
<var>yr</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;4)&#160; to
<var>ToTl</var>.</div></li><li><div class="p">Add &#160; 86400&#160;&#215; Sum<sub><var>m</var>&#160;&lt;&#160;<var>mo</var></sub>&#160;<a href="#f-daysInMonth" shape="rect"><i><span class="arrow">&#183;</span>daysInMonth<span class="arrow">&#183;</span></i></a>(<var>yr</var>&#160;+&#160;1,&#160;<var>m</var>) to
<var>ToTl</var></div></li><li><div class="p">Add &#160; 86400&#160;&#215;&#160;<var>da</var>&#160; to
<var>ToTl</var>.</div></li></ol></div></li><li><div class="p">(<a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>, <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>,
and <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a>)
<ol class="enumla"><li><div class="p">Add&#160; 3600&#160;&#215;&#160;<var>hr</var>&#160;+
60&#160;&#215;&#160;<var>mi</var>&#160;+ <var>se</var>&#160;
to <var>ToTl</var>.</div></li></ol></div></li><li><div class="p">Return <var>ToTl</var>.</div></li></ol>
</div>
</div></div></div><div class="div3">
<h4><a name="sec-dt-lexmaps" id="sec-dt-lexmaps" shape="rect"></a>E.3.5 Lexical mappings</h4><div class="defset">
<div class="not_aux">
<div class="defset-head">Partial Date/time Lexical Mappings</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-dt-yrMap" id="f-dt-yrMap" shape="rect"><i><span class="arrow">&#183;</span>yearFragValue<span class="arrow">&#183;</span></i></a></b> (<var>YR</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>YR</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">an integer</div>
<b>Algorithm:</b>
<div class="defindent">Return <a href="#f-noDecVal" shape="rect"><i><span class="arrow">&#183;</span>noDecimalMap<span class="arrow">&#183;</span></i></a>(<var>YR</var>)</div>
<div class="deftop"><b><a name="f-dt-moMap" id="f-dt-moMap" shape="rect"><i><span class="arrow">&#183;</span>monthFragValue<span class="arrow">&#183;</span></i></a></b> (<var>MO</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>MO</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">an integer</div>
<b>Algorithm:</b>
<div class="defindent">Return <a href="#f-unsNoDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalMap<span class="arrow">&#183;</span></i></a>(<var>MO</var>)</div>
<div class="deftop"><b><a name="f-dt-daMap" id="f-dt-daMap" shape="rect"><i><span class="arrow">&#183;</span>dayFragValue<span class="arrow">&#183;</span></i></a></b> (<var>DA</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>DA</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">an integer</div>
<b>Algorithm:</b>
<div class="defindent">Return <a href="#f-unsNoDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalMap<span class="arrow">&#183;</span></i></a>(<var>DA</var>)</div>
<div class="deftop"><b><a name="f-dt-hrMap" id="f-dt-hrMap" shape="rect"><i><span class="arrow">&#183;</span>hourFragValue<span class="arrow">&#183;</span></i></a></b> (<var>HR</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>HR</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">an integer</div>
<b>Algorithm:</b>
<div class="defindent">Return <a href="#f-unsNoDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalMap<span class="arrow">&#183;</span></i></a>(<var>HR</var>)</div>
<div class="deftop"><b><a name="f-dt-miMap" id="f-dt-miMap" shape="rect"><i><span class="arrow">&#183;</span>minuteFragValue<span class="arrow">&#183;</span></i></a></b> (<var>MI</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>MI</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">an integer</div>
<b>Algorithm:</b>
<div class="defindent">Return <a href="#f-unsNoDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalMap<span class="arrow">&#183;</span></i></a>(<var>MI</var>)</div>
<div class="deftop"><b><a name="f-dt-seMap" id="f-dt-seMap" shape="rect"><i><span class="arrow">&#183;</span>secondFragValue<span class="arrow">&#183;</span></i></a></b> (<var>SE</var>) &#8594; decimal number
<div class="defindent">Maps a <a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto a decimal number, presumably the <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>SE</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a decimal number</div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-unsNoDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedNoDecimalMap<span class="arrow">&#183;</span></i></a>(<var>SE</var>)&#160;&#160; when no decimal point occurs in <var>SE</var>, and</div></li><li><div class="p"><a href="#f-unsDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtMap<span class="arrow">&#183;</span></i></a>(<var>SE</var>)&#160;&#160; otherwise.</div></li></ul></div>
<div class="deftop"><b><a name="f-dt-tzMap" id="f-dt-tzMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneFragValue<span class="arrow">&#183;</span></i></a></b> (<var>TZ</var>) &#8594; integer
<div class="defindent">Maps a <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>,
onto an integer, presumably the <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>TZ</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">an integer</div>
<b>Algorithm:</b>
<div class="defindent"><var>TZ</var> necessarily consists of either just '<code>Z</code>', or
a sign ('<code>+</code>' or '<code>-</code>') followed by an instance <var>H</var> of
<a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>, a colon, and an instance <var>M</var> of <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>
</div>
<div class="defindent">Return
<ul><li><div class="p">0&#160;&#160; when <var>TZ</var> is '<code>Z</code>',</div></li><li><div class="p">&#8722;(<a href="#f-unsDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtMap<span class="arrow">&#183;</span></i></a>(<var>H</var>)&#160;&#215;&#160;60&#160;+ <a href="#f-unsDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtMap<span class="arrow">&#183;</span></i></a>(<var>M</var>))&#160;&#160;
when the sign is '<code>-</code>', and</div></li><li><div class="p"><a href="#f-unsDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtMap<span class="arrow">&#183;</span></i></a>(<var>H</var>)&#160;&#215;&#160;60&#160;+ <a href="#f-unsDecVal" shape="rect"><i><span class="arrow">&#183;</span>unsignedDecimalPtMap<span class="arrow">&#183;</span></i></a>(<var>M</var>)&#160;&#160;
otherwise.</div></li></ul></div>
</div></div><div class="note"><div class="p"><b>Note:</b> There is no <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> for
<a href="#nt-eodFrag" shape="rect"><i>endOfDayFrag</i></a>; it is handled specially by the relevant
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a>.&#160; See, e.g.,
<a href="#vp-dateTimeLexRep" shape="rect"><i><span class="arrow">&#183;</span>dateTimeLexicalMap<span class="arrow">&#183;</span></i></a>.</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-dateTimeLexRep" id="vp-dateTimeLexRep" shape="rect"><i><span class="arrow">&#183;</span>dateTimeLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#dateTime" shape="rect">dateTime</a>
<div class="defindent">Maps a <a href="#nt-dateTimeRep" shape="rect"><i>dateTimeLexicalRep</i></a> to
a <a href="#dateTime" shape="rect">dateTime</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-dateTimeRep" shape="rect"><i>dateTimeLexicalRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a complete <a href="#dateTime" shape="rect">dateTime</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>LEX</var> necessarily includes
substrings
that are instances of <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>,
<a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>, and
<a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>
(below referred to as
<var>Y</var>, <var>MO</var>, and <var>D</var> respectively);
it
also contains either instances of
<a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>, <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>,
and <a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>(<var>Y</var>,
<var>MI</var>, and <var>S</var>),
or
else an instance of <a href="#nt-eodFrag" shape="rect"><i>endOfDayFrag</i></a>; finally,
it may optionally contain an instance
of<a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>
(<var>T</var>).</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>tz</var>
be <a href="#f-dt-tzMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneFragValue<span class="arrow">&#183;</span></i></a>(<var>T</var>) when <var>T</var>
is present, otherwise <b><i>absent</i></b>.</td></tr></tbody></table></div>
<div class="defindent">
Return
<ul><li><div class="p"><a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<a href="#f-dt-yrMap" shape="rect"><i><span class="arrow">&#183;</span>yearFragValue<span class="arrow">&#183;</span></i></a>(<var>Y</var>),
<a href="#f-dt-moMap" shape="rect"><i><span class="arrow">&#183;</span>monthFragValue<span class="arrow">&#183;</span></i></a>(<var>MO</var>),
<a href="#f-dt-daMap" shape="rect"><i><span class="arrow">&#183;</span>dayFragValue<span class="arrow">&#183;</span></i></a>(<var>D</var>), 24, 0, 0,
<var>tz</var>) when <a href="#nt-eodFrag" shape="rect"><i>endOfDayFrag</i></a>
is present, and</div></li><li><div class="p">
<a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<a href="#f-dt-yrMap" shape="rect"><i><span class="arrow">&#183;</span>yearFragValue<span class="arrow">&#183;</span></i></a>(<var>Y</var>),
<a href="#f-dt-moMap" shape="rect"><i><span class="arrow">&#183;</span>monthFragValue<span class="arrow">&#183;</span></i></a>(<var>MO</var>),
<a href="#f-dt-daMap" shape="rect"><i><span class="arrow">&#183;</span>dayFragValue<span class="arrow">&#183;</span></i></a>(<var>D</var>),
<a href="#f-dt-hrMap" shape="rect"><i><span class="arrow">&#183;</span>hourFragValue<span class="arrow">&#183;</span></i></a>(<var>H</var>),
<a href="#f-dt-miMap" shape="rect"><i><span class="arrow">&#183;</span>minuteFragValue<span class="arrow">&#183;</span></i></a>(<var>MI</var>),
<a href="#f-dt-seMap" shape="rect"><i><span class="arrow">&#183;</span>secondFragValue<span class="arrow">&#183;</span></i></a>(<var>S</var>),
<var>tz</var>) otherwise</div></li></ul>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-timeLexRep" id="vp-timeLexRep" shape="rect"><i><span class="arrow">&#183;</span>timeLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#time" shape="rect">time</a>
<div class="defindent">Maps a <a href="#nt-timeRep" shape="rect"><i>timeLexicalRep</i></a> to
a <a href="#time" shape="rect">time</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches
<a href="#nt-timeRep" shape="rect"><i>timeLexicalRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a complete
<a href="#time" shape="rect">time</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>LEX</var> necessarily includes
either
substrings that are instances of <a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>,
<a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>,
and
<a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>, (below referred to as
<var>H</var>, <var>M</var>, and <var>S</var> respectively), or
else an instance of
<a href="#nt-eodFrag" shape="rect"><i>endOfDayFrag</i></a>; finally, it may optionally contain
an instance of <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>
(<var>T</var>).</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>tz</var>
be <a href="#f-dt-tzMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneFragValue<span class="arrow">&#183;</span></i></a>(<var>T</var>) when <var>T</var>
is present, otherwise <b><i>absent</i></b></td></tr></tbody></table></div>
<div class="defindent">
Return
<ul><li><div class="p"><a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<b><i>absent</i></b>,
<b><i>absent</i></b>, <b><i>absent</i></b>, 0, 0, 0,
<var>tz</var>) when <a href="#nt-eodFrag" shape="rect"><i>endOfDayFrag</i></a>
is present, and</div></li><li><div class="p">
<a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<b><i>absent</i></b>,
<b><i>absent</i></b>, <b><i>absent</i></b>,
<a href="#f-dt-hrMap" shape="rect"><i><span class="arrow">&#183;</span>hourFragValue<span class="arrow">&#183;</span></i></a>(<var>H</var>),
<a href="#f-dt-miMap" shape="rect"><i><span class="arrow">&#183;</span>minuteFragValue<span class="arrow">&#183;</span></i></a>(<var>MI</var>),
<a href="#f-dt-seMap" shape="rect"><i><span class="arrow">&#183;</span>secondFragValue<span class="arrow">&#183;</span></i></a>(<var>S</var>),
<var>tz</var>) otherwise.</div></li></ul>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-dateLexRep" id="vp-dateLexRep" shape="rect"><i><span class="arrow">&#183;</span>dateLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#date" shape="rect">date</a>
<div class="defindent">Maps a <a href="#nt-dateRep" shape="rect"><i>dateLexicalRep</i></a> to a
<a href="#date" shape="rect">date</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches
<a href="#nt-dateRep" shape="rect"><i>dateLexicalRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a complete <a href="#date" shape="rect">date</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>LEX</var> necessarily includes
an instance <var>Y</var> of <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>,
an instance <var>M</var> of <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>,
and an instance <var>D</var> of <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>,
hyphen-separated and optionally followed by an instance
<var>T</var> of <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>.</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>tz</var>
be <a href="#f-dt-tzMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneFragValue<span class="arrow">&#183;</span></i></a>(<var>T</var>) when <var>T</var>
is present, otherwise <b><i>absent</i></b></td></tr></tbody></table></div>
<div class="defindent">
Return
<a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<a href="#f-dt-yrMap" shape="rect"><i><span class="arrow">&#183;</span>yearFragValue<span class="arrow">&#183;</span></i></a>(<var>Y</var>),
<a href="#f-dt-moMap" shape="rect"><i><span class="arrow">&#183;</span>monthFragValue<span class="arrow">&#183;</span></i></a>(<var>M</var>),
<a href="#f-dt-daMap" shape="rect"><i><span class="arrow">&#183;</span>dayFragValue<span class="arrow">&#183;</span></i></a>(<var>D</var>),
<b><i>absent</i></b>, <b><i>absent</i></b>, <b><i>absent</i></b>,
<var>tz</var>.)
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-gYearMonthLexRep" id="vp-gYearMonthLexRep" shape="rect"><i><span class="arrow">&#183;</span>gYearMonthLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#gYearMonth" shape="rect">gYearMonth</a>
<div class="defindent">Maps a <a href="#nt-gYearMonthRep" shape="rect"><i>gYearMonthLexicalRep</i></a> to a
<a href="#gYearMonth" shape="rect">gYearMonth</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches
<a href="#nt-gYearMonthRep" shape="rect"><i>gYearMonthLexicalRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a complete <a href="#gYearMonth" shape="rect">gYearMonth</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>LEX</var> necessarily includes
an instance <var>Y</var> of <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>
and an instance <var>M</var> of <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>,
hyphen-separated and optionally followed by an instance
<var>T</var> of <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>.</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>tz</var>
be <a href="#f-dt-tzMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneFragValue<span class="arrow">&#183;</span></i></a>(<var>T</var>) when <var>T</var>
is present, otherwise <b><i>absent</i></b>.</td></tr></tbody></table></div>
<div class="defindent">
Return
<a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<a href="#f-dt-yrMap" shape="rect"><i><span class="arrow">&#183;</span>yearFragValue<span class="arrow">&#183;</span></i></a>(<var>Y</var>),
<a href="#f-dt-moMap" shape="rect"><i><span class="arrow">&#183;</span>monthFragValue<span class="arrow">&#183;</span></i></a>(<var>M</var>),
<b><i>absent</i></b>, <b><i>absent</i></b>, <b><i>absent</i></b>,
<b><i>absent</i></b>, <var>tz</var>).
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-gYearLexRep" id="vp-gYearLexRep" shape="rect"><i><span class="arrow">&#183;</span>gYearLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#gYear" shape="rect">gYear</a>
<div class="defindent">Maps a <a href="#nt-gYearRep" shape="rect"><i>gYearLexicalRep</i></a> to
a <a href="#gYear" shape="rect">gYear</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-gYearRep" shape="rect"><i>gYearLexicalRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a complete <a href="#gYear" shape="rect">gYear</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>LEX</var> necessarily includes
an instance <var>Y</var> of
<a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>,
optionally followed by an instance <var>T</var>
of <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>.</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>tz</var>
be <a href="#f-dt-tzMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneFragValue<span class="arrow">&#183;</span></i></a>(<var>T</var>) when <var>T</var>
is present, otherwise <b><i>absent</i></b>.</td></tr></tbody></table></div>
<div class="defindent">
Return
<a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<a href="#f-dt-yrMap" shape="rect"><i><span class="arrow">&#183;</span>yearFragValue<span class="arrow">&#183;</span></i></a>(<var>Y</var>),
<b><i>absent</i></b>, <b><i>absent</i></b>, <b><i>absent</i></b>, <b><i>absent</i></b>,
<b><i>absent</i></b>, <var>tz</var>).
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-gMonthDayLexRep" id="vp-gMonthDayLexRep" shape="rect"><i><span class="arrow">&#183;</span>gMonthDayLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#gMonthDay" shape="rect">gMonthDay</a>
<div class="defindent">Maps a <a href="#nt-gMonthDayRep" shape="rect"><i>gMonthDayLexicalRep</i></a> to a
<a href="#gMonthDay" shape="rect">gMonthDay</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches
<a href="#nt-gMonthDayRep" shape="rect"><i>gMonthDayLexicalRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a complete <a href="#gMonthDay" shape="rect">gMonthDay</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>LEX</var> necessarily includes
an instance <var>M</var> of <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>
and an instance <var>D</var> of <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>,
hyphen-separated and optionally followed by an instance
<var>T</var> of <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>.</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>tz</var>
be <a href="#f-dt-tzMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneFragValue<span class="arrow">&#183;</span></i></a>(<var>T</var>) when <var>T</var>
is present, otherwise <b><i>absent</i></b>.</td></tr></tbody></table></div>
<div class="defindent">
Return
<a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<b><i>absent</i></b>,
<a href="#f-dt-moMap" shape="rect"><i><span class="arrow">&#183;</span>monthFragValue<span class="arrow">&#183;</span></i></a>(<var>M</var>),
<a href="#f-dt-daMap" shape="rect"><i><span class="arrow">&#183;</span>dayFragValue<span class="arrow">&#183;</span></i></a>(<var>D</var>),
<b><i>absent</i></b>, <b><i>absent</i></b>, <b><i>absent</i></b>,
<var>tz</var>.
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-gDayLexRep" id="vp-gDayLexRep" shape="rect"><i><span class="arrow">&#183;</span>gDayLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#gDay" shape="rect">gDay</a>
<div class="defindent">Maps a <a href="#nt-gDayRep" shape="rect"><i>gDayLexicalRep</i></a> to
a <a href="#gDay" shape="rect">gDay</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-gDayRep" shape="rect"><i>gDayLexicalRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a complete <a href="#gDay" shape="rect">gDay</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>LEX</var> necessarily includes
an instance <var>D</var> of <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>,
optionally followed by an instance <var>T</var>
of <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>.</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>tz</var>
be <a href="#f-dt-tzMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneFragValue<span class="arrow">&#183;</span></i></a>(<var>T</var>) when <var>T</var>
is present, otherwise <b><i>absent</i></b>.</td></tr></tbody></table></div>
<div class="defindent">
<ol class="enumar"><li><div class="p">Return
<a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<var>gD</var>,
<b><i>absent</i></b>, <b><i>absent</i></b>,
<a href="#f-dt-daMap" shape="rect"><i><span class="arrow">&#183;</span>dayFragValue<span class="arrow">&#183;</span></i></a>(<var>D</var>), <b><i>absent</i></b>,
<b><i>absent</i></b>, <b><i>absent</i></b>,
<var>tz</var>).</div></li></ol>
Return
<a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<b><i>absent</i></b>, <b><i>absent</i></b>,
<a href="#f-dt-daMap" shape="rect"><i><span class="arrow">&#183;</span>dayFragValue<span class="arrow">&#183;</span></i></a>(<var>D</var>), <b><i>absent</i></b>,
<b><i>absent</i></b>, <b><i>absent</i></b>, <var>tz</var>).
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-gMonthLexRep" id="vp-gMonthLexRep" shape="rect"><i><span class="arrow">&#183;</span>gMonthLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#gMonth" shape="rect">gMonth</a>
<div class="defindent">Maps a <a href="#nt-gMonthRep" shape="rect"><i>gMonthLexicalRep</i></a> to
a <a href="#gMonth" shape="rect">gMonth</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">matches <a href="#nt-gMonthRep" shape="rect"><i>gMonthLexicalRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a complete <a href="#gMonth" shape="rect">gMonth</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>LEX</var> necessarily includes
an instance <var>M</var> of <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>,
optionally followed by an instance <var>T</var>
of <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>.</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>tz</var>
be <a href="#f-dt-tzMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneFragValue<span class="arrow">&#183;</span></i></a>(<var>T</var>) when <var>T</var>
is present, otherwise <b><i>absent</i></b>.</td></tr></tbody></table></div>
<div class="defindent">
Return
<a href="#p-setDTFromRaw" shape="rect"><i><span class="arrow">&#183;</span>newDateTime<span class="arrow">&#183;</span></i></a>(<b><i>absent</i></b>,
<a href="#f-dt-moMap" shape="rect"><i><span class="arrow">&#183;</span>monthFragValue<span class="arrow">&#183;</span></i></a>(<var>M</var>),
<b><i>absent</i></b>, <b><i>absent</i></b>,
<b><i>absent</i></b>, <b><i>absent</i></b>, <var>tz</var>)
</div>
</div></div></div><div class="div3">
<h4><a name="sec-dt-canmaps" id="sec-dt-canmaps" shape="rect"></a>E.3.6 Canonical Mappings</h4><div class="defset">
<div class="aux">
<div class="defset-head">Auxiliary Functions for Date/time Canonical Mappings</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-unsTwoDigCanFragMap" id="f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>i</var>) &#8594; <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a>
<div class="defindent">Maps a nonnegative integer less than 100 onto an unsigned always-two-digit numeral.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>i</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative integer less than 100</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-unsNoDecNuml" shape="rect"><i>unsignedNoDecimalPtNumeral</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return <a href="#f-digit" shape="rect"><i><span class="arrow">&#183;</span>digit<span class="arrow">&#183;</span></i></a>(<var>i</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;10)&#160;&amp;
<a href="#f-digit" shape="rect"><i><span class="arrow">&#183;</span>digit<span class="arrow">&#183;</span></i></a>(<var>i</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;10)</div>
<div class="deftop"><b><a name="f-fourDigCanFragMap" id="f-fourDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>fourDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>i</var>) &#8594; <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a>
<div class="defindent">Maps an integer between -10000 and 10000 onto an always-four-digit numeral.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>i</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer whose absolute value is less than 10000</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-noDecNuml" shape="rect"><i>noDecimalPtNumeral</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return<ul><li><div class="p">'<code>-</code>'&#160;&amp;&#160;<a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(&#8722;<var>i</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;100)&#160;&amp;
<a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(&#8722;<var>i</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;100)&#160;&#160; when
<var>i</var> is negative,</div></li><li><div class="p"><a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>i</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;100)&#160;&amp;
<a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>i</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;100)&#160;&#160; otherwise.</div></li></ul></div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Partial Date/time Canonical Mappings</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-yrCanFragMap" id="f-yrCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>yearCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>y</var>) &#8594; <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>y</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer </td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-yrFrag" shape="rect"><i>yearFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-noDecCanMap" shape="rect"><i><span class="arrow">&#183;</span>noDecimalPtCanonicalMap<span class="arrow">&#183;</span></i></a>(<var>y</var>)&#160;&#160; when&#160; |<var>y</var>|&#160;&gt;&#160;9999&#160;.</div></li><li><div class="p"><a href="#f-fourDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>fourDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>y</var>)&#160;&#160; otherwise.</div></li></ul></div>
<div class="deftop"><b><a name="f-moCanFragMap" id="f-moCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>monthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>m</var>) &#8594; <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>m</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer between 1 and 12 inclusive</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-moFrag" shape="rect"><i>monthFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return <a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>m</var>)</div>
<div class="deftop"><b><a name="f-daCanFragMap" id="f-daCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>dayCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>d</var>) &#8594; <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>d</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer between 1 and 31 inclusive&#160;
(may be limited further depending on associated <a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a> and <a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>)</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-daFrag" shape="rect"><i>dayFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return <a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>d</var>)</div>
<div class="deftop"><b><a name="f-hrCanFragMap" id="f-hrCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>hourCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>h</var>) &#8594; <a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>h</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer between 0 and 23 inclusive.</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-hrFrag" shape="rect"><i>hourFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return <a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>h</var>)</div>
<div class="deftop"><b><a name="f-miCanFragMap" id="f-miCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>minuteCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>m</var>) &#8594; <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>m</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer between 0 and 59 inclusive.</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-miFrag" shape="rect"><i>minuteFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return <a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>m</var>)</div>
<div class="deftop"><b><a name="f-seCanFragMap" id="f-seCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>secondCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>s</var>) &#8594; <a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>
<div class="defindent">Maps a decimal number, presumably the <a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>s</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a nonnegative decimal number less than 70</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-seFrag" shape="rect"><i>secondFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>s</var>)&#160;&#160;
when <var>s</var> is an integer, and</div></li><li><div class="p"><a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>s</var><a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>1)&#160;&amp;
'<code>.</code>'&#160;&amp; <a href="#f-fracDigitsMap" shape="rect"><i><span class="arrow">&#183;</span>fractionDigitsCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>s</var><a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>1)&#160;&#160;
otherwise.</div></li></ul></div>
<div class="deftop"><b><a name="f-tzCanFragMap" id="f-tzCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneCanonicalFragmentMap<span class="arrow">&#183;</span></i></a></b> (<var>t</var>) &#8594; <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>
<div class="defindent">Maps an integer, presumably the <a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a> property of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a> value,
onto a <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a>, part of a <a href="#dt-dt-7PropMod" shape="rect">date/timeSevenPropertyModel</a>'s <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>t</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">an integer between &#8722;840 and 840 inclusive</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-tzFrag" shape="rect"><i>timezoneFrag</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return<ul><li><div class="p">'<code>Z</code>'&#160;&#160; when <var>t</var> is zero,</div></li><li><div class="p">'<code>-</code>'&#160;&amp;&#160;<a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(&#8722;<var>t</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;60)&#160;&amp;
'<code>:</code>'&#160;&amp;
<a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(&#8722;<var>t</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;60)&#160;&#160; when
<var>t</var> is negative, and</div></li><li><div class="p">'<code>+</code>'&#160;&amp;&#160;<a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>t</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;60)&#160;&amp;
'<code>:</code>'&#160;&amp;
<a href="#f-unsTwoDigCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>unsTwoDigitCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>t</var>&#160;<a href="#dt-mod" class="termref" shape="rect"><span class="arrow">&#183;</span>mod<span class="arrow">&#183;</span></a>&#160;60)&#160;&#160; otherwise.</div></li></ul></div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-dateTimeCanRep" id="vp-dateTimeCanRep" shape="rect"><i><span class="arrow">&#183;</span>dateTimeCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>dt</var>) &#8594; <a href="#nt-dateRep" shape="rect"><i>dateLexicalRep</i></a>
<div class="defindent">Maps a <a href="#dateTime" shape="rect">dateTime</a> value to a <a href="#nt-dateTimeRep" shape="rect"><i>dateTimeLexicalRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>dt</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a complete <a href="#dateTime" shape="rect">dateTime</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-dateRep" shape="rect"><i>dateLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<var>DT</var> be&#160;
<a href="#f-yrCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>yearCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>dt</var>'s&#160;<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>)&#160;&amp;
'<code>-</code>'&#160;&amp;
<a href="#f-moCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>monthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>dt</var>'s&#160;<a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>)&#160;&amp;
'<code>-</code>'&#160;&amp;
<a href="#f-daCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>dayCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>dt</var>'s&#160;<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>)&#160;&amp;
'<code>T</code>'&#160;&amp;
<a href="#f-hrCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>hourCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>dt</var>'s&#160;<a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>)&#160;&amp;
'<code>:</code>'&#160;&amp;
<a href="#f-miCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>minuteCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>dt</var>'s&#160;<a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>)&#160;&amp;
'<code>:</code>'&#160;&amp;
<a href="#f-seCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>secondCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>dt</var>'s&#160;<a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a>)&#160;.
</td></tr></tbody></table></div>
<div class="defindent">Return
<ul><li><div class="p"><var>DT</var>&#160;&#160; when
<var>dt</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
is <b><i>absent</i></b>, and</div></li><li><div class="p"><var>DT</var>&#160;&amp;
<a href="#f-tzCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>dt</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>)&#160;&#160; otherwise.</div></li></ul>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-timeCanRep" id="vp-timeCanRep" shape="rect"><i><span class="arrow">&#183;</span>timeCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>ti</var>) &#8594; <a href="#nt-timeRep" shape="rect"><i>timeLexicalRep</i></a>
<div class="defindent">Maps a <a href="#time" shape="rect">time</a> value to a <a href="#nt-timeRep" shape="rect"><i>timeLexicalRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>ti</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a complete <a href="#time" shape="rect">time</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-timeRep" shape="rect"><i>timeLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<var>T</var> be&#160;
<a href="#f-hrCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>hourCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>ti</var>'s&#160;<a href="#vp-dt-hour" shape="rect"><i><span class="arrow">&#183;</span>hour<span class="arrow">&#183;</span></i></a>)&#160;&amp;
'<code>:</code>'&#160;&amp;
<a href="#f-miCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>minuteCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>ti</var>'s&#160;<a href="#vp-dt-minute" shape="rect"><i><span class="arrow">&#183;</span>minute<span class="arrow">&#183;</span></i></a>)&#160;&amp;
'<code>:</code>'&#160;&amp;
<a href="#f-seCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>secondCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>ti</var>'s&#160;<a href="#vp-dt-second" shape="rect"><i><span class="arrow">&#183;</span>second<span class="arrow">&#183;</span></i></a>)&#160;.
</td></tr></tbody></table></div>
<div class="defindent">Return
<ul><li><div class="p"><var>T</var>&#160;&#160; when
<var>ti</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
is <b><i>absent</i></b>, and</div></li><li><div class="p"><var>T</var>&#160;&amp;
<a href="#f-tzCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>ti</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>)&#160;&#160; otherwise.</div></li></ul>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-dateCanRep" id="vp-dateCanRep" shape="rect"><i><span class="arrow">&#183;</span>dateCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>da</var>) &#8594; <a href="#nt-dateRep" shape="rect"><i>dateLexicalRep</i></a>
<div class="defindent">Maps a <a href="#date" shape="rect">date</a> value to a <a href="#nt-dateRep" shape="rect"><i>dateLexicalRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>da</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a complete <a href="#date" shape="rect">date</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-dateRep" shape="rect"><i>dateLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<var>D</var> be&#160;
<a href="#f-yrCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>yearCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>da</var>'s&#160;<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>)&#160;&amp;
'<code>-</code>'&#160;&amp;
<a href="#f-moCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>monthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>da</var>'s&#160;<a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>)&#160;&amp;
'<code>-</code>'&#160;&amp;
<a href="#f-daCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>dayCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>da</var>'s&#160;<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>)&#160;.
</td></tr></tbody></table></div>
<div class="defindent">Return
<ul><li><div class="p"><var>D</var>&#160;&#160; when
<var>da</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
is <b><i>absent</i></b>, and</div></li><li><div class="p"><var>D</var>&#160;&amp;
<a href="#f-tzCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>da</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>)&#160;&#160;
otherwise.</div></li></ul>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-gYearMonthCanRep" id="vp-gYearMonthCanRep" shape="rect"><i><span class="arrow">&#183;</span>gYearMonthCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>ym</var>) &#8594; <a href="#nt-gYearMonthRep" shape="rect"><i>gYearMonthLexicalRep</i></a>
<div class="defindent">Maps a <a href="#gYearMonth" shape="rect">gYearMonth</a> value to a <a href="#nt-gYearMonthRep" shape="rect"><i>gYearMonthLexicalRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>ym</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a complete <a href="#gYearMonth" shape="rect">gYearMonth</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-gYearMonthRep" shape="rect"><i>gYearMonthLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<var>YM</var> be&#160;
<a href="#f-yrCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>yearCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>ym</var>'s&#160;<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>)&#160;&amp;
'<code>-</code>'&#160;&amp;
<a href="#f-moCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>monthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>ym</var>'s&#160;<a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>)&#160;.
</td></tr></tbody></table></div>
<div class="defindent">Return
<ul><li><div class="p"><var>YM</var>&#160;&#160; when <var>ym</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
is <b><i>absent</i></b>, and</div></li><li><div class="p"><var>YM</var>&#160;&amp;
<a href="#f-tzCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>ym</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>)&#160;&#160;
otherwise.</div></li></ul>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-gYearCanRep" id="vp-gYearCanRep" shape="rect"><i><span class="arrow">&#183;</span>gYearCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>gY</var>) &#8594; <a href="#nt-gYearRep" shape="rect"><i>gYearLexicalRep</i></a>
<div class="defindent">Maps a <a href="#gYear" shape="rect">gYear</a> value to a <a href="#nt-gYearRep" shape="rect"><i>gYearLexicalRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>gY</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a complete <a href="#gYear" shape="rect">gYear</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-gYearRep" shape="rect"><i>gYearLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p"><a href="#f-yrCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>yearCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>gY</var>'s&#160;<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>)&#160;&#160;
when <var>gY</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
is <b><i>absent</i></b>, and</div></li><li><div class="p"><a href="#f-yrCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>yearCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>gY</var>'s&#160;<a href="#vp-dt-year" shape="rect"><i><span class="arrow">&#183;</span>year<span class="arrow">&#183;</span></i></a>)&#160;&amp;
<a href="#f-tzCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>gY</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>)&#160;&#160;
otherwise.</div></li></ul></div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-gMonthDayCanRep" id="vp-gMonthDayCanRep" shape="rect"><i><span class="arrow">&#183;</span>gMonthDayCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>md</var>) &#8594; <a href="#nt-gMonthDayRep" shape="rect"><i>gMonthDayLexicalRep</i></a>
<div class="defindent">Maps a <a href="#gMonthDay" shape="rect">gMonthDay</a> value to a <a href="#nt-gMonthDayRep" shape="rect"><i>gMonthDayLexicalRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>md</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a complete <a href="#gMonthDay" shape="rect">gMonthDay</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-gMonthDayRep" shape="rect"><i>gMonthDayLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1">
<var>MD</var> be&#160; '<code>--</code>'&#160;&amp;
<a href="#f-moCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>monthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>md</var>'s&#160;<a href="#vp-dt-month" shape="rect"><i><span class="arrow">&#183;</span>month<span class="arrow">&#183;</span></i></a>)&#160;&amp;
'<code>-</code>'&#160;&amp;
<a href="#f-daCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>dayCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>md</var>'s&#160;<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>)&#160;.
</td></tr></tbody></table></div>
<div class="defindent">Return
<ul><li><div class="p"><var>MD</var>&#160;&#160; when <var>md</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
is <b><i>absent</i></b>, and</div></li><li><div class="p"><var>MD</var>&#160;&amp;
<a href="#f-tzCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>md</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>)&#160;&#160;
otherwise.</div></li></ul>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-gDayCanRep" id="vp-gDayCanRep" shape="rect"><i><span class="arrow">&#183;</span>gDayCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>gD</var>) &#8594; <a href="#nt-gDayRep" shape="rect"><i>gDayLexicalRep</i></a>
<div class="defindent">Maps a <a href="#gDay" shape="rect">gDay</a> value to a <a href="#nt-gDayRep" shape="rect"><i>gDayLexicalRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>gD</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a complete <a href="#gDay" shape="rect">gDay</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-gDayRep" shape="rect"><i>gDayLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p">'<code>---</code>'&#160;&amp;
<a href="#f-daCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>dayCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>gD</var>'s&#160;<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>)&#160;&#160;
when
<var>gD</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
is <b><i>absent</i></b>, and</div></li><li><div class="p">'<code>---</code>'&#160;&amp;
<a href="#f-daCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>dayCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>gD</var>'s&#160;<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>)&#160;&amp;
<a href="#f-tzCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>gD</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>)&#160;&#160;
otherwise.</div></li></ul></div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="vp-gMonthCanRep" id="vp-gMonthCanRep" shape="rect"><i><span class="arrow">&#183;</span>gMonthCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>gM</var>) &#8594; <a href="#nt-gMonthRep" shape="rect"><i>gMonthLexicalRep</i></a>
<div class="defindent">Maps a <a href="#gMonth" shape="rect">gMonth</a> value to a <a href="#nt-gMonthRep" shape="rect"><i>gMonthLexicalRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>gM</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a complete <a href="#gMonth" shape="rect">gMonth</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-gMonthRep" shape="rect"><i>gMonthLexicalRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p">'<code>--</code>'&#160;&amp;
<a href="#f-moCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>monthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>gM</var>'s&#160;<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>)&#160;&#160;
when
<var>gM</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>
is <b><i>absent</i></b>, and</div></li><li><div class="p">'<code>--</code>'&#160;&amp;
<a href="#f-moCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>monthCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>gM</var>'s&#160;<a href="#vp-dt-day" shape="rect"><i><span class="arrow">&#183;</span>day<span class="arrow">&#183;</span></i></a>)&#160;&amp;
<a href="#f-tzCanFragMap" shape="rect"><i><span class="arrow">&#183;</span>timezoneCanonicalFragmentMap<span class="arrow">&#183;</span></i></a>(<var>gM</var>'s&#160;<a href="#vp-dt-timezone" shape="rect"><i><span class="arrow">&#183;</span>timezoneOffset<span class="arrow">&#183;</span></i></a>)&#160;&#160;
otherwise.</div></li></ul></div>
</div></div></div></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#sec-dt-functions" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="sec-misc-lexmaps" id="sec-misc-lexmaps" shape="rect"></a>E.4 Lexical and Canonical Mappings for Other Datatypes</h3><p>The following functions are used with various datatypes neither numeric
nor date/time related.</p><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-stringLexmap" id="f-stringLexmap" shape="rect"><i><span class="arrow">&#183;</span>stringLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#string" shape="rect">string</a>
<div class="defindent">Maps a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching the
<a href="#nt-stringRep" shape="rect"><i>stringRep</i></a> production to
a <a href="#string" shape="rect">string</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching
<a href="#nt-stringRep" shape="rect"><i>stringRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">A <a href="#string" shape="rect">string</a> value</div>
<b>Algorithm:</b>
<div class="defindent">Return <var>LEX</var>.&#160; (The function is the identity
function on the domain.)</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-booleanLexmap" id="f-booleanLexmap" shape="rect"><i><span class="arrow">&#183;</span>booleanLexicalMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#boolean" shape="rect">boolean</a>
<div class="defindent">Maps a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching the
<a href="#nt-booleanRep" shape="rect"><i>booleanRep</i></a> production to
a <a href="#boolean" shape="rect">boolean</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching
<a href="#nt-booleanRep" shape="rect"><i>booleanRep</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">A <a href="#boolean" shape="rect">boolean</a> value</div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p"><b><i>true</i></b>&#160;&#160; when <var>LEX</var> is '<code>true</code>'
or '<code>1</code>'&#160;, and</div></li><li><div class="p"><b><i>false</i></b>&#160;&#160; otherwise (<var>LEX</var> is '<code>false</code>'
or '<code>0</code>').</div></li></ul>
</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-stringCanmap" id="f-stringCanmap" shape="rect"><i><span class="arrow">&#183;</span>stringCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>s</var>) &#8594; <a href="#nt-stringRep" shape="rect"><i>stringRep</i></a>
<div class="defindent">Maps a <a href="#string" shape="rect">string</a> value to
a <a href="#nt-stringRep" shape="rect"><i>stringRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>s</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#string" shape="rect">string</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-stringRep" shape="rect"><i>stringRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return <var>s</var>.&#160; (The function is the identity
function on the domain.)</div>
</div></div><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-booleanCanmap" id="f-booleanCanmap" shape="rect"><i><span class="arrow">&#183;</span>booleanCanonicalMap<span class="arrow">&#183;</span></i></a></b> (<var>b</var>) &#8594; <a href="#nt-booleanRep" shape="rect"><i>booleanRep</i></a>
<div class="defindent">Maps a <a href="#boolean" shape="rect">boolean</a> value to
a <a href="#nt-booleanRep" shape="rect"><i>booleanRep</i></a>.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>b</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#boolean" shape="rect">boolean</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-booleanRep" shape="rect"><i>booleanRep</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p">'<code>true</code>'&#160;&#160; when <var>b</var> is <b><i>true</i></b>, and</div></li><li><div class="p">'<code>false</code>'&#160;&#160; otherwise (<var>b</var> is <b><i>false</i></b>).</div></li></ul>
</div>
</div></div><div class="div3">
<h4><a name="sec-hexbin-lexmaps" id="sec-hexbin-lexmaps" shape="rect"></a>E.4.1 Lexical and canonical mappings for <a href="#hexBinary" shape="rect">hexBinary</a></h4><p>The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> for <a href="#hexBinary" shape="rect">hexBinary</a>
maps each pair of hexadecimal digits to an octet, in the conventional way:</p><div class="defset">
<div class="not_aux">
<div class="defset-head">Lexical Mapping for hexBinary</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-hexBinaryMap" id="f-hexBinaryMap" shape="rect"><i><span class="arrow">&#183;</span>hexBinaryMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; <a href="#hexBinary" shape="rect">hexBinary</a>
<div class="defindent">Maps a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching the
<a href="#nt-hexBinary" shape="rect"><i>hexBinary</i></a> production to
a sequence of octets in the form of a <a href="#hexBinary" shape="rect">hexBinary</a> value.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching
<a href="#nt-hexBinary" shape="rect"><i>hexBinary</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">A sequence of binary octets in the form of a <a href="#hexBinary" shape="rect">hexBinary</a> value</div>
<b>Algorithm:</b>
<div class="defindent"><var>LEX</var> necessarily includes a sequence of zero or more
substrings matching the <a href="#nt-hexOctet" shape="rect"><i>hexOctet</i></a> production.</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>o</var> be the sequence of octets formed by applying
<a href="#f-hexOctetMap" shape="rect"><i><span class="arrow">&#183;</span>hexOctetMap<span class="arrow">&#183;</span></i></a> to each <a href="#nt-hexOctet" shape="rect"><i>hexOctet</i></a> in
<var>LEX</var>, in order, and concatenating the results.</td></tr></tbody></table></div>
<div class="defindent">Return <var>o</var>.
</div>
</div></div><p>The auxiliary functions
<a href="#f-hexOctetMap" shape="rect"><i><span class="arrow">&#183;</span>hexOctetMap<span class="arrow">&#183;</span></i></a> and
<a href="#f-hexDigitMap" shape="rect"><i><span class="arrow">&#183;</span>hexDigitMap<span class="arrow">&#183;</span></i></a> are used by
<a href="#f-hexBinaryMap" shape="rect"><i><span class="arrow">&#183;</span>hexBinaryMap<span class="arrow">&#183;</span></i></a>.</p><div class="defset">
<div class="aux">
<div class="defset-head">Mappings for hexadecimal digits</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-hexOctetMap" id="f-hexOctetMap" shape="rect"><i><span class="arrow">&#183;</span>hexOctetMap<span class="arrow">&#183;</span></i></a></b> (<var>LEX</var>) &#8594; octet
<div class="defindent">Maps a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching the
<a href="#nt-hexOctet" shape="rect"><i>hexOctet</i></a> production to
a single octet.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>LEX</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> matching
<a href="#nt-hexOctet" shape="rect"><i>hexOctet</i></a></td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">A single binary octet</div>
<b>Algorithm:</b>
<div class="defindent"><var>LEX</var> necessarily includes exactly two hexadecimal digits.</div>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>d0</var> be the first hexadecimal digit in <var>LEX</var>.
Let <var>d1</var> be the second hexadecimal digit in <var>LEX</var>.</td></tr></tbody></table></div>
<div class="defindent">Return the octet whose four high-order bits are <a href="#f-hexDigitMap" shape="rect"><i><span class="arrow">&#183;</span>hexDigitMap<span class="arrow">&#183;</span></i></a>(<var>d0</var>) and whose four low-order bits
are <a href="#f-hexDigitMap" shape="rect"><i><span class="arrow">&#183;</span>hexDigitMap<span class="arrow">&#183;</span></i></a>(<var>d1</var>).
</div>
<div class="deftop"><b><a name="f-hexDigitMap" id="f-hexDigitMap" shape="rect"><i><span class="arrow">&#183;</span>hexDigitMap<span class="arrow">&#183;</span></i></a></b> (<var>d</var>) &#8594; a bit-sequence of length four
<div class="defindent">Maps a hexadecimal digit (a character matching
the <a href="#nt-hexDigit" shape="rect"><i>hexDigit</i></a> production) to
a sequence of four binary digits.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>d</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a hexadecimal digit</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">a sequence of four binary digits</div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p">0000 when <var>d</var> = '<code>0</code>',</div></li><li><div class="p">0001 when <var>d</var> = '<code>1</code>',</div></li><li><div class="p">0010 when <var>d</var> = '<code>2</code>',</div></li><li><div class="p">0011 when <var>d</var> = '<code>3</code>',</div></li><li><div class="p">...</div></li><li><div class="p">1110 when <var>d</var> = '<code>E</code>' or '<code>e</code>',</div></li><li><div class="p">1111 when <var>d</var> = '<code>F</code>' or '<code>f</code>'.</div></li></ul>
</div>
</div></div><p>The <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a> for <a href="#hexBinary" shape="rect">hexBinary</a> uses only the
uppercase forms of A-F.</p><div class="defset">
<div class="not_aux">
<div class="defset-head">Canonical Mapping for hexBinary</div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-hexBinaryCanonical" id="f-hexBinaryCanonical" shape="rect"><i><span class="arrow">&#183;</span>hexBinaryCanonical<span class="arrow">&#183;</span></i></a></b> (<var>o</var>) &#8594; <a href="#nt-hexBinary" shape="rect"><i>hexBinary</i></a>
<div class="defindent">Maps a <a href="#hexBinary" shape="rect">hexBinary</a> value to a literal
matching the <a href="#nt-hexBinary" shape="rect"><i>hexBinary</i></a> production.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>o</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a <a href="#hexBinary" shape="rect">hexBinary</a> value</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-hexBinary" shape="rect"><i>hexBinary</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>h</var> be the sequence of literals formed by applying
<a href="#f-hexOctetCanonical" shape="rect"><i><span class="arrow">&#183;</span>hexOctetCanonical<span class="arrow">&#183;</span></i></a> to each octet in
<var>o</var>, in order, and concatenating the results.</td></tr></tbody></table></div>
<div class="defindent">Return <var>h</var>.
</div>
</div></div><div class="defset">
<div class="aux">
<div class="defset-head">Auxiliary procedures for canonical mapping of <a href="#hexBinary" shape="rect">hexBinary</a></div>
<div class="deftop" style="margin-top: 0em;"><b><a name="f-hexOctetCanonical" id="f-hexOctetCanonical" shape="rect"><i><span class="arrow">&#183;</span>hexOctetCanonical<span class="arrow">&#183;</span></i></a></b> (<var>o</var>) &#8594; <a href="#nt-hexOctet" shape="rect"><i>hexOctet</i></a>
<div class="defindent">Maps a binary octet to a literal
matching the <a href="#nt-hexOctet" shape="rect"><i>hexOctet</i></a> production.</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>o</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a binary octet</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-hexOctet" shape="rect"><i>hexOctet</i></a></div>
<b>Algorithm:</b>
<div class="defindent"><table><tbody><tr><td valign="top" rowspan="1" colspan="1">Let </td><td rowspan="1" colspan="1"><var>lo</var> be the four low-order bits of <var>o</var>,
and <var>hi</var> be the four high-order bits.</td></tr></tbody></table></div>
<div class="defindent">Return <a href="#f-hexDigitCanonical" shape="rect"><i><span class="arrow">&#183;</span>hexDigitCanonical<span class="arrow">&#183;</span></i></a>(<var>hi</var>) &amp;
<a href="#f-hexDigitCanonical" shape="rect"><i><span class="arrow">&#183;</span>hexDigitCanonical<span class="arrow">&#183;</span></i></a>(<var>lo</var>).
</div>
<div class="deftop"><b><a name="f-hexDigitCanonical" id="f-hexDigitCanonical" shape="rect"><i><span class="arrow">&#183;</span>hexDigitCanonical<span class="arrow">&#183;</span></i></a></b> (<var>b</var>) &#8594; <a href="#nt-hexDigit" shape="rect"><i>hexDigit</i></a>
<div class="defindent">Maps a four-bit sequence to a hexadecimal
digit (a literal
matching the <a href="#nt-hexDigit" shape="rect"><i>hexDigit</i></a> production).</div>
</div>
<b>Arguments:</b><div class="defindent"><table><tbody>
<tr><td rowspan="1" colspan="1"><var>b</var></td><td rowspan="1" colspan="1">:&#160;</td><td rowspan="1" colspan="1">a sequence of four binary digits</td></tr>
</tbody></table></div>
<b>Result:</b><div class="defindent">matches <a href="#nt-hexDigit" shape="rect"><i>hexDigit</i></a></div>
<b>Algorithm:</b>
<div class="defindent">Return
<ul><li><div class="p">'<code>0</code>' when <var>d</var> = 0000,</div></li><li><div class="p">'<code>1</code>' when <var>d</var> = 0001,</div></li><li><div class="p">'<code>2</code>' when <var>d</var> = 0010,</div></li><li><div class="p">'<code>3</code>' when <var>d</var> = 0011,</div></li><li><div class="p">...</div></li><li><div class="p">'<code>E</code>' when <var>d</var> = 1110,</div></li><li><div class="p">'<code>F</code>' when <var>d</var> = 1111.</div></li></ul>
</div>
</div></div></div></div></div><div class="div1">
<h2><a name="sec-datatypes-and-facets" id="sec-datatypes-and-facets" shape="rect"></a>F Datatypes and Facets</h2><div class="div2">
<h3><span class="nav"> </span><a name="app-fundamental-facets" id="app-fundamental-facets" shape="rect"></a>F.1 Fundamental Facets</h3><p>
The following table shows the values of the fundamental facets
for each <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatype.
</p>
<table border="1" bgcolor="#bedce6">
<tbody>
<tr><th rowspan="1" colspan="1">&#160;</th><th rowspan="1" colspan="1">Datatype</th><th rowspan="1" colspan="1">ordered</th><th rowspan="1" colspan="1">bounded</th><th rowspan="1" colspan="1">cardinality</th><th rowspan="1" colspan="1">numeric</th></tr>
<tr><td rowspan="19" colspan="1"><a href="#dt-primitive" shape="rect">primitive</a></td><td rowspan="1" colspan="1"><a href="#string" shape="rect">string</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#boolean" shape="rect">boolean</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">finite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#float" shape="rect">float</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">true</td><td rowspan="1" colspan="1">finite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#double" shape="rect">double</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">true</td><td rowspan="1" colspan="1">finite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#decimal" shape="rect">decimal</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#duration" shape="rect">duration</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#dateTime" shape="rect">dateTime</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#time" shape="rect">time</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#date" shape="rect">date</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#gYearMonth" shape="rect">gYearMonth</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#gYear" shape="rect">gYear</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#gMonthDay" shape="rect">gMonthDay</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#gDay" shape="rect">gDay</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#gMonth" shape="rect">gMonth</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#hexBinary" shape="rect">hexBinary</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#base64Binary" shape="rect">base64Binary</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#anyURI" shape="rect">anyURI</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#QName" shape="rect">QName</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#NOTATION" shape="rect">NOTATION</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td colspan="7" rowspan="1"></td></tr>
<tr><td rowspan="28" colspan="1"><a href="#dt-constructed" shape="rect">non-primitive</a></td><td rowspan="1" colspan="1"><a href="#normalizedString" shape="rect">normalizedString</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#token" shape="rect">token</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#language" shape="rect">language</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#IDREFS" shape="rect">IDREFS</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#ENTITIES" shape="rect">ENTITIES</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#NMTOKEN" shape="rect">NMTOKEN</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#NMTOKENS" shape="rect">NMTOKENS</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#Name" shape="rect">Name</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#NCName" shape="rect">NCName</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#ID" shape="rect">ID</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#IDREF" shape="rect">IDREF</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#ENTITY" shape="rect">ENTITY</a></td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#integer" shape="rect">integer</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#nonPositiveInteger" shape="rect">nonPositiveInteger</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#negativeInteger" shape="rect">negativeInteger</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#long" shape="rect">long</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">true</td><td rowspan="1" colspan="1">finite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#int" shape="rect">int</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">true</td><td rowspan="1" colspan="1">finite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#short" shape="rect">short</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">true</td><td rowspan="1" colspan="1">finite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#byte" shape="rect">byte</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">true</td><td rowspan="1" colspan="1">finite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#nonNegativeInteger" shape="rect">nonNegativeInteger</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#unsignedLong" shape="rect">unsignedLong</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">true</td><td rowspan="1" colspan="1">finite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#unsignedInt" shape="rect">unsignedInt</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">true</td><td rowspan="1" colspan="1">finite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#unsignedShort" shape="rect">unsignedShort</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">true</td><td rowspan="1" colspan="1">finite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#unsignedByte" shape="rect">unsignedByte</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">true</td><td rowspan="1" colspan="1">finite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#positiveInteger" shape="rect">positiveInteger</a></td><td rowspan="1" colspan="1">total</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">true</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#yearMonthDuration" shape="rect">yearMonthDuration</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#dayTimeDuration" shape="rect">dayTimeDuration</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
<tr><td rowspan="1" colspan="1"><a href="#dateTimeStamp" shape="rect">dateTimeStamp</a></td><td rowspan="1" colspan="1">partial</td><td rowspan="1" colspan="1">false</td><td rowspan="1" colspan="1">countably infinite</td><td rowspan="1" colspan="1">false</td></tr>
</tbody>
</table>
</div></div><div class="div1">
<h2><a name="regexs" id="regexs" shape="rect"></a>G Regular Expressions</h2><p>A <a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expression<span class="arrow">&#183;</span></a>&#160;<var>R</var> is a sequence of
characters that denote a
set
of strings
<em>L</em>(<var>R</var>).&#160;
When used to constrain a <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>, a
regular
expression <var>R</var> asserts that only strings in
<em>L</em>(<var>R</var>)
are valid <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> for values of that type.</p><div class="note"><div class="p"><b>Note:</b>
Unlike some popular regular expression languages (including those
defined by Perl and standard Unix utilities), the regular
expression language defined here implicitly anchors all regular
expressions at the head and tail, as the most common use of
regular expressions in <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a> is to match entire <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a>.
For example, a datatype <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from <a href="#string" shape="rect">string</a> such
that all values must begin with the character
'<code>A</code>'
(#x41) and end with the character
'<code>Z</code>'
(#x5a) would be defined as follows:
</div><pre xml:space="preserve">&lt;simpleType name='myString'&gt;
&lt;restriction base='string'&gt;
&lt;pattern value='A.*Z'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre><div class="p">In regular expression languages that are not implicitly anchored at the head and tail,
it is customary to write the equivalent regular expression as:
<blockquote><blockquote><p><code>^A.*Z$</code></p></blockquote></blockquote>
where
'<code>^</code>'
anchors the pattern at the head and
'<code>$</code>'
anchors at the tail.</div><div class="p">In those rare cases where an unanchored match is desired, including
'<code>.*</code>'
at the beginning and ending of the regular expression will
achieve the desired results.&#160; For example, a datatype <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from string
such that all values must contain at least 3 consecutive
'<code>A</code>'
(#x41)
characters somewhere within the value could be defined as follows:</div><pre xml:space="preserve">&lt;simpleType name='myString'&gt;
&lt;restriction base='string'&gt;
&lt;pattern value='.*AAA.*'/&gt;
&lt;/restriction&gt;
&lt;/simpleType&gt;</pre></div><div class="div2">
<h3><span class="nav"> <a href="#regex-piece" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="regex-branch" id="regex-branch" shape="rect"></a>G.1 Regular expressions and branches</h3><p><span class="termdef"><a name="dt-regex" id="dt-regex" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>regular expression</b> is composed from zero or more
<a href="#dt-branch" class="termref" shape="rect"><span class="arrow">&#183;</span>branches<span class="arrow">&#183;</span></a>,
separated by
'<code>|</code>'
characters.</span>
</p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Regular Expression</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="regex" id="regex" shape="rect"></a><a name="nt-regExp" id="nt-regExp" shape="rect"></a>[64]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>regExp</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>
<a href="#nt-branch" shape="rect"><i>branch</i></a>
( '|' <a href="#nt-branch" shape="rect"><i>branch</i></a> )*
</code></td></tr></tbody></table></td></tr></tbody></table><p></p><table border="1"><col width="50%" span="1" /><col width="50%" span="1" /><thead><tr><th rowspan="1" colspan="1">For all
<a href="#dt-branch" class="termref" shape="rect"><span class="arrow">&#183;</span>branches<span class="arrow">&#183;</span></a>
<var>S</var>, and for all
<a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular
expressions<span class="arrow">&#183;</span></a> <var>T</var>, valid
<a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular
expressions<span class="arrow">&#183;</span></a> <var>R</var> are:</th><th rowspan="1" colspan="1">Denoting the set of strings
<em>L</em>(<var>R</var>)
containing:</th></tr></thead><tbody><tr><td align="center" rowspan="1" colspan="1">(empty string)</td><td align="center" rowspan="1" colspan="1">just the empty string</td></tr><tr><td align="center" rowspan="1" colspan="1"><var>S</var></td><td align="center" rowspan="1" colspan="1">all strings in
<em>L</em>(<var>S</var>)</td></tr><tr><td align="center" rowspan="1" colspan="1"><var>S</var>&#160;<code>|</code><var>T</var></td><td align="center" rowspan="1" colspan="1">all strings in
<em>L</em>(<var>S</var>)
and all strings in
<em>L</em>(<var>T</var>)</td></tr></tbody></table><p><span class="termdef"><a name="dt-branch" id="dt-branch" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>branch</b> consists of zero or more
<a href="#dt-piece" class="termref" shape="rect"><span class="arrow">&#183;</span>pieces<span class="arrow">&#183;</span></a>,
concatenated together.</span></p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Branch</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="branch" id="branch" shape="rect"></a><a name="nt-branch" id="nt-branch" shape="rect"></a>[65]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>branch</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code><a href="#nt-piece" shape="rect"><i>piece</i></a>*</code></td></tr></tbody></table></td></tr></tbody></table><p></p><table border="1"><col width="50%" span="1" /><col width="50%" span="1" /><thead><tr><th rowspan="1" colspan="1">
For all
<a href="#dt-piece" class="termref" shape="rect"><span class="arrow">&#183;</span>pieces<span class="arrow">&#183;</span></a>
<var>S</var>, and for all
<a href="#dt-branch" class="termref" shape="rect"><span class="arrow">&#183;</span>branches<span class="arrow">&#183;</span></a>
<var>T</var>, valid
<a href="#dt-branch" class="termref" shape="rect"><span class="arrow">&#183;</span>branches<span class="arrow">&#183;</span></a>
<var>R</var> are:
</th><th rowspan="1" colspan="1">Denoting the set of strings
<em>L</em>(<var>R</var>)
containing:</th></tr></thead><tbody><tr><td align="center" rowspan="1" colspan="1"><var>S</var></td><td align="center" rowspan="1" colspan="1">all strings in
<em>L</em>(<var>S</var>)</td></tr><tr><td align="center" rowspan="1" colspan="1"><var>S</var><var>T</var></td><td align="center" rowspan="1" colspan="1">all strings
<var>s</var><var>t</var>
with <var>s</var> in
<em>L</em>(<var>S</var>)
and
<var>t</var>
in
<em>L</em>(<var>T</var>)</td></tr></tbody></table></div><div class="div2">
<h3><span class="nav"><a href="#regex-branch" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#regex-char-metachar" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="regex-piece" id="regex-piece" shape="rect"></a>G.2 Pieces, atoms, quantifiers</h3><p><span class="termdef"><a name="dt-piece" id="dt-piece" title="" shape="rect">[Definition:]&#160;&#160;</a>
A <b>piece</b> is an
<a href="#dt-atom" class="termref" shape="rect"><span class="arrow">&#183;</span>atom<span class="arrow">&#183;</span></a>, possibly followed by a
<a href="#dt-quantifier" class="termref" shape="rect"><span class="arrow">&#183;</span>quantifier<span class="arrow">&#183;</span></a>.
</span></p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Piece</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="piece" id="piece" shape="rect"></a><a name="nt-piece" id="nt-piece" shape="rect"></a>[66]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>piece</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code><a href="#nt-atom" shape="rect"><i>atom</i></a>&#160;<a href="#nt-quantifier" shape="rect"><i>quantifier</i></a>?</code></td></tr></tbody></table></td></tr></tbody></table><p></p><table border="1"><col width="50%" span="1" /><col width="50%" span="1" /><thead><tr><th rowspan="1" colspan="1">For all
<a href="#dt-atom" class="termref" shape="rect"><span class="arrow">&#183;</span>atoms<span class="arrow">&#183;</span></a>
<var>S</var> and non-negative
integers
<var>n</var>,
<var>m</var>
such that
<var>n</var>
&#8804; <var>m</var>, valid
<a href="#dt-piece" class="termref" shape="rect"><span class="arrow">&#183;</span>pieces<span class="arrow">&#183;</span></a>
<var>R</var> are:</th><th rowspan="1" colspan="1">Denoting the set of strings
<em>L</em>(<var>R</var>)
containing:</th></tr></thead><tbody><tr><td align="center" rowspan="1" colspan="1"><var>S</var></td><td align="center" rowspan="1" colspan="1">all strings in
<em>L</em>(<var>S</var>)</td></tr><tr><td align="center" rowspan="1" colspan="1"><var>S</var>&#160;<code>?</code></td><td align="center" rowspan="1" colspan="1">the empty string, and all strings in
<em>L</em>(<var>S</var>)</td></tr><tr><td align="center" rowspan="1" colspan="1"><var>S</var>&#160;<code>*</code></td><td align="center" rowspan="1" colspan="1">all strings in
<em>L</em>(<var>S</var>&#160;<code>?</code>)
and all strings
<var>s</var><var>t</var>
with <var>s</var> in
<em>L</em>(<var>S</var>&#160;<code>*</code>)
and
<var>t</var>
in
<em>L</em>(<var>S</var>)&#160;&#160;
<em>(all concatenations of zero or more strings from
<em>L</em>(<var>S</var>)&#160;)</em></td></tr><tr><td align="center" rowspan="1" colspan="1"><var>S</var>&#160;<code>+</code></td><td align="center" rowspan="1" colspan="1">all strings
<var>s</var><var>t</var>
with <var>s</var> in
<em>L</em>(<var>S</var>)
and
<var>t</var>
in
<em>L</em>(<var>S</var>&#160;<code>*</code>)&#160;&#160;
<em>(all concatenations of one or more strings from
<em>L</em>(<var>S</var>)&#160;)</em></td></tr><tr><td align="center" rowspan="1" colspan="1"><var>S</var>&#160;<code>{</code><var>n</var><code>,</code><var>m</var><code>}</code></td><td align="center" rowspan="1" colspan="1">all strings
<var>s</var><var>t</var>
with <var>s</var> in
<em>L</em>(<var>S</var>)
and
<var>t</var>
in
<em>L</em>(<var>S</var>&#160;<code>{</code><var>n</var>&#8722;1<code>,</code><var>m</var>&#8722;1<code>}</code>)
<em>(all
concatenations
of at least
<var>n</var>,
and at most
<var>m</var>,
strings from
<em>L</em>(<var>S</var>)&#160;)</em></td></tr><tr><td align="center" rowspan="1" colspan="1"><var>S</var>&#160;<code>{</code><var>n</var><code>}</code></td><td align="center" rowspan="1" colspan="1">all
strings in
<em>L</em>(<var>S</var><code>{</code><var>n</var><code>,</code><var>n</var><code>}</code>)&#160;
<em>(all
concatenations
of exactly
<var>n</var>
strings from
<em>L</em>(<var>S</var>)&#160;)</em></td></tr><tr><td align="center" rowspan="1" colspan="1"><var>S</var>&#160;<code>{</code><var>n</var><code>,}</code></td><td align="center" rowspan="1" colspan="1">all
strings in
<em>L</em>(<var>S</var><code>{</code><var>n</var><code>}</code>&#160;<var>S</var>&#160;<code>*</code>)&#160;
<em>(all
concatenations
of at least
<var>n</var>
strings from
<em>L</em>(<var>S</var>)&#160;)</em></td></tr><tr><td align="center" rowspan="1" colspan="1"><var>S</var><code>&#160;{0,</code><var>m</var><code>}</code></td><td align="center" rowspan="1" colspan="1">all strings
<var>s</var><var>t</var>
with <var>s</var> in
<em>L</em>(<var>S</var>&#160;<code>?</code>)
and
<var>t</var>
in
<em>L</em>(<var>S</var>&#160;<code>{</code>0<code>,</code><var>m</var>&#8722;1<code>}</code>).&#160;
<em>(all
concatenations
of at most
<var>m</var>
strings from
<em>L</em>(<var>S</var>)&#160;)</em></td></tr><tr><td align="center" rowspan="1" colspan="1"><var>S</var>&#160;<code>{0,0}</code></td><td align="center" rowspan="1" colspan="1">only the empty string</td></tr></tbody></table><div class="note"><div class="p"><b>Note:</b> The regular expression language in the Perl Programming Language
<a href="#Perl" shape="rect">[Perl]</a> does not include a quantifier of the form&#160;
<var>S</var>&#160;<code>{,</code><var>m</var><code>}</code>&#160;,
since it is logically equivalent to
<var>S</var>&#160;<code>{0,</code><var>m</var><code>}</code>&#160;.&#160;
We have, therefore, left this logical possibility out of the regular
expression language defined by this specification.</div></div><p><span class="termdef"><a name="dt-quantifier" id="dt-quantifier" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>quantifier</b> is one of
'<code>?</code>',
'<code>*</code>', or '<code>+</code>', or a string of the form&#160;
<code>{</code><var>n</var><code>,</code><var>m</var><code>}</code>&#160;
or&#160; <code>{</code><var>n</var><code>,}</code>&#160;,
which have the meanings
defined in the table above.
</span>
</p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Quantifier</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="quant" id="quant" shape="rect"></a><a name="nt-quantifier" id="nt-quantifier" shape="rect"></a>[67]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>quantifier</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>[?*+] | ( '{' <a href="#nt-quantity" shape="rect"><i>quantity</i></a> '}' )</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="quantity" id="quantity" shape="rect"></a><a name="nt-quantity" id="nt-quantity" shape="rect"></a>[68]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>quantity</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code><a href="#nt-quantRange" shape="rect"><i>quantRange</i></a> |
<a href="#nt-quantMin" shape="rect"><i>quantMin</i></a> | <a href="#nt-QuantExact" shape="rect"><i>QuantExact</i></a></code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="quantRange" id="quantRange" shape="rect"></a><a name="nt-quantRange" id="nt-quantRange" shape="rect"></a>[69]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>quantRange</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code><a href="#nt-QuantExact" shape="rect"><i>QuantExact</i></a> ',' <a href="#nt-QuantExact" shape="rect"><i>QuantExact</i></a></code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="quantMin" id="quantMin" shape="rect"></a><a name="nt-quantMin" id="nt-quantMin" shape="rect"></a>[70]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>quantMin</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code><a href="#nt-QuantExact" shape="rect"><i>QuantExact</i></a> ','</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="quantExact" id="quantExact" shape="rect"></a><a name="nt-QuantExact" id="nt-QuantExact" shape="rect"></a>[71]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>QuantExact</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>[0-9]+</code></td></tr></tbody></table></td></tr></tbody></table><p>
<span class="termdef"><a name="dt-atom" id="dt-atom" title="" shape="rect">[Definition:]&#160;&#160;</a>
An <b>atom</b> is either a
<a href="#dt-normalc" class="termref" shape="rect"><span class="arrow">&#183;</span>normal character<span class="arrow">&#183;</span></a>, a <a href="#dt-charclass" class="termref" shape="rect"><span class="arrow">&#183;</span>character class<span class="arrow">&#183;</span></a>, or
a parenthesized <a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expression<span class="arrow">&#183;</span></a>.</span>
</p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Atom</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="atom" id="atom" shape="rect"></a><a name="nt-atom" id="nt-atom" shape="rect"></a>[72]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>atom</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code><a href="#nt-NormalChar" shape="rect"><i>NormalChar</i></a> |
<a href="#nt-charClass" shape="rect"><i>charClass</i></a> | ( '('
<a href="#nt-regExp" shape="rect"><i>regExp</i></a> ')' )</code></td></tr></tbody></table></td></tr></tbody></table><p></p><table border="1"><col width="50%" span="1" /><col width="50%" span="1" /><thead><tr><th rowspan="1" colspan="1">
For all
<a href="#dt-normalc" class="termref" shape="rect"><span class="arrow">&#183;</span>normal
characters<span class="arrow">&#183;</span></a>
<var>c</var>,
<a href="#dt-charclass" class="termref" shape="rect"><span class="arrow">&#183;</span>character
classes<span class="arrow">&#183;</span></a> <var>C</var>, and
<a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular
expressions<span class="arrow">&#183;</span></a> <var>S</var>, valid
<a href="#dt-atom" class="termref" shape="rect"><span class="arrow">&#183;</span>atoms<span class="arrow">&#183;</span></a>
<var>R</var> are:
</th><th rowspan="1" colspan="1">Denoting the set of strings
<em>L</em>(<var>R</var>)
containing:</th></tr></thead><tbody><tr><td align="center" rowspan="1" colspan="1"><var>c</var></td><td align="center" rowspan="1" colspan="1">the single string consisting only of
<var>c</var></td></tr><tr><td align="center" rowspan="1" colspan="1"><var>C</var></td><td align="center" rowspan="1" colspan="1">all strings in
<em>L</em>(<var>C</var>)</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>(</code>&#160;<var>S</var>&#160;<code>)</code></td><td align="center" rowspan="1" colspan="1"><em>L</em>(<var>S</var>)</td></tr></tbody></table></div><div class="div2">
<h3><span class="nav"><a href="#regex-piece" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#charcter-classes" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="regex-char-metachar" id="regex-char-metachar" shape="rect"></a>G.3 Characters and metacharacters</h3><p><span class="termdef"><a name="dt-metac" id="dt-metac" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>metacharacter</b> is either
'<code>.</code>',
'<code>\</code>', '<code>?</code>', '<code>*</code>',
'<code>+</code>', '<code>{</code>', '<code>}</code>',
'<code>(</code>', '<code>)</code>',
'<code>|</code>',
'<code>[</code>',
or '<code>]</code>'.&#160;
These characters have special meanings in
<a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular
expressions<span class="arrow">&#183;</span></a>, but can be escaped to form
<a href="#dt-atom" class="termref" shape="rect"><span class="arrow">&#183;</span>atoms<span class="arrow">&#183;</span></a>
that denote the sets of strings containing only themselves, i.e., an escaped
<b>metacharacter</b>
behaves like a <a href="#dt-normalc" class="termref" shape="rect"><span class="arrow">&#183;</span>normal character<span class="arrow">&#183;</span></a>.</span></p><p><span class="termdef"><a name="dt-normalc" id="dt-normalc" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>normal character</b> is any XML character that is not a
<a href="#dt-metac" class="termref" shape="rect"><span class="arrow">&#183;</span>metacharacter<span class="arrow">&#183;</span></a>.&#160;
In
<a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular
expressions<span class="arrow">&#183;</span></a>, a <b>normal
character</b> is an
<a href="#dt-atom" class="termref" shape="rect"><span class="arrow">&#183;</span>atom<span class="arrow">&#183;</span></a>
that denotes the singleton set of strings containing only itself.</span></p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Normal Character</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="char" id="char" shape="rect"></a><a name="nt-NormalChar" id="nt-NormalChar" shape="rect"></a>[73]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>NormalChar</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>[^.\?*+{}()|#x5B#x5D]</code></td><td rowspan="1" colspan="1"><i>/* &#160;N.B.:&#160; #x5B = '<code>[</code>',
#x5D = '<code>]</code>'&#160; */</i></td></tr></tbody></table></td></tr></tbody></table></div><div class="div2">
<h3 class="withToc"><span class="nav"><a href="#regex-char-metachar" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="charcter-classes" id="charcter-classes" shape="rect"></a>G.4 Character Classes</h3><div class="localToc">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;G.4.1 <a href="#charclassexps" shape="rect">Character class expressions</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;G.4.2 <a href="#cces" shape="rect">Character Class Escapes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;G.4.2.1 <a href="#cces-sce" shape="rect">Single-character escapes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;G.4.2.2 <a href="#cces-catesc" shape="rect">Category escapes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;G.4.2.3 <a href="#cces-blockesc" shape="rect">Block escapes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;G.4.2.4 <a href="#sec-unrecognized-catesc" shape="rect">Unrecognized category escapes</a><br clear="none" />
&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;G.4.2.5 <a href="#cces-mce" shape="rect">Multi-character escapes</a><br clear="none" />
</div><p><span class="termdef"><a name="dt-charclass" id="dt-charclass" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>character class</b> is an <a href="#dt-atom" class="termref" shape="rect"><span class="arrow">&#183;</span>atom<span class="arrow">&#183;</span></a>
<var>R</var> that identifies a
set
of characters
<em>C</em>(<var>R</var>).&#160;
The set of strings
<em>L</em>(<var>R</var>).&#160;
denoted by a character class <var>R</var> contains one single-character
string "<var>c</var>" for each character <var>c</var> in
<em>C</em>(<var>R</var>).</span>
<a name="anchor11125c" id="anchor11125c" shape="rect"></a>
</p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Character Class</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="charClass" id="charClass" shape="rect"></a><a name="nt-charClass" id="nt-charClass" shape="rect"></a>[74]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>charClass</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>
<a href="#nt-SingleCharEsc" shape="rect"><i>SingleCharEsc</i></a> |
<a href="#nt-charClassEsc" shape="rect"><i>charClassEsc</i></a> |
<a href="#nt-charClassExpr" shape="rect"><i>charClassExpr</i></a> |
<a href="#nt-WildcardEsc" shape="rect"><i>WildcardEsc</i></a>
</code></td></tr></tbody></table></td></tr></tbody></table><p>A character class is either
a <a href="#dt-cces1" class="termref" shape="rect"><span class="arrow">&#183;</span>single-character escape<span class="arrow">&#183;</span></a> or
a <a href="#dt-cces" class="termref" shape="rect"><span class="arrow">&#183;</span>character class escape<span class="arrow">&#183;</span></a> or a
<a href="#dt-charexpr" class="termref" shape="rect"><span class="arrow">&#183;</span>character class expression<span class="arrow">&#183;</span></a> or
a <a href="#dt-wcchar" class="termref" shape="rect"><span class="arrow">&#183;</span>wildcard character<span class="arrow">&#183;</span></a>.</p><div class="note"><div class="p"><b>Note:</b> The rules for which characters must be escaped and which
can represent themselves are different when inside a
<a href="#dt-charexpr" class="termref" shape="rect"><span class="arrow">&#183;</span>character class expression<span class="arrow">&#183;</span></a>; some
<a href="#dt-normalc" class="termref" shape="rect"><span class="arrow">&#183;</span>normal characters<span class="arrow">&#183;</span></a>
must be escaped and some
<a href="#dt-metac" class="termref" shape="rect"><span class="arrow">&#183;</span>metacharacters<span class="arrow">&#183;</span></a> need
not be.</div></div><div class="div3">
<h4><a name="charclassexps" id="charclassexps" shape="rect"></a>G.4.1 Character class expressions</h4><p><span class="termdef"><a name="dt-charexpr" id="dt-charexpr" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>character class expression</b>
(<a href="#nt-charClassExpr" shape="rect"><i>charClassExpr</i></a>)
is a <a href="#dt-chargroup" class="termref" shape="rect"><span class="arrow">&#183;</span>character group<span class="arrow">&#183;</span></a> surrounded by
'<code>[</code>'
and
'<code>]</code>'
characters.&#160; For all character groups
<var>G</var>,&#160;
<code>[</code>&#160;<var>G</var>&#160;<code>]</code>&#160;
is a valid <b>character class
expression</b>, identifying the set of characters
<em>C</em>(<code>[</code><var>G</var><code>]</code>)
= <em>C</em>(<var>G</var>).</span></p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Character Class Expression</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="charClassExpr" id="charClassExpr" shape="rect"></a><a name="nt-charClassExpr" id="nt-charClassExpr" shape="rect"></a>[75]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>charClassExpr</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'[' <a href="#nt-charGroup" shape="rect"><i>charGroup</i></a> ']'</code></td></tr></tbody></table></td></tr></tbody></table><p>
<span class="termdef"><a name="dt-chargroup" id="dt-chargroup" title="" shape="rect">[Definition:]&#160;&#160;</a>
A
<b>character group</b> (<a href="#nt-charGroup" shape="rect"><i>charGroup</i></a>) starts
with either a
<a href="#dt-poschargroup" class="termref" shape="rect"><span class="arrow">&#183;</span>positive character group<span class="arrow">&#183;</span></a> or
a <a href="#dt-negchargroup" class="termref" shape="rect"><span class="arrow">&#183;</span>negative character group<span class="arrow">&#183;</span></a>,
and is optionally followed by a subtraction operator '<code>-</code>'
and a further <a href="#dt-charexpr" class="termref" shape="rect"><span class="arrow">&#183;</span>character class expression<span class="arrow">&#183;</span></a>.</span>&#160;
<span class="termdef"><a name="dt-ccsub" id="dt-ccsub" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<a href="#dt-chargroup" class="termref" shape="rect"><span class="arrow">&#183;</span>character group<span class="arrow">&#183;</span></a> that contains a subtraction operator
is referred to as a <b>character class subtraction</b>.</span>
</p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Character Group</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="chargroup" id="chargroup" shape="rect"></a><a name="nt-charGroup" id="nt-charGroup" shape="rect"></a>[76]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>charGroup</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>(
<a href="#nt-posCharGroup" shape="rect"><i>posCharGroup</i></a> |
<a href="#nt-negCharGroup" shape="rect"><i>negCharGroup</i></a>
)
( '-' <a href="#nt-charClassExpr" shape="rect"><i>charClassExpr</i></a> )?
</code></td></tr></tbody></table></td></tr></tbody></table><p>If the first character in a
<a href="#nt-charGroup" shape="rect"><i>charGroup</i></a> is '<code>^</code>', this is
taken as indicating that the <a href="#nt-charGroup" shape="rect"><i>charGroup</i></a>
starts with a <a href="#nt-negCharGroup" shape="rect"><i>negCharGroup</i></a>.&#160;
A <a href="#nt-posCharGroup" shape="rect"><i>posCharGroup</i></a>
can itself start with '<code>^</code>' but only when it
appears within a <a href="#nt-negCharGroup" shape="rect"><i>negCharGroup</i></a>, that is, when the
'<code>^</code>' is preceded by another '<code>^</code>'.</p><div class="note"><div class="p"><b>Note:</b> For example, the string
'<code>[^X]</code>'
is ambiguous according the grammar rules, denoting either
a character class consisting of a negative character group
with
'<code>X</code>'
as a member, or
a positive character class with
'<code>X</code>'
and
'<code>^</code>'
as members.&#160; The
normative prose rule just given requires that the
first interpretation be taken.</div><div class="p">The string
'<code>[^]</code>'
is unambiguous: the grammar recognizes it as
a character class expression
containing
a positive
character group containing just
the character
'<code>^</code>'.&#160;
But the grammatical derivation of the string violates
the rule just given, so the string
'<code>[^]</code>'
<span class="rfc2119">must not</span> be accepted as a regular expression.</div></div><p>A '<code>-</code>' character
is recognized as a subtraction operator
(and hence, as terminating the <a href="#nt-posCharGroup" shape="rect"><i>posCharGroup</i></a> or
<a href="#nt-negCharGroup" shape="rect"><i>negCharGroup</i></a>) if it is immediately followed by a '<code>[</code>'
character.</p><p> For any <a href="#dt-poschargroup" class="termref" shape="rect"><span class="arrow">&#183;</span>positive character group<span class="arrow">&#183;</span></a>
or <a href="#dt-negchargroup" class="termref" shape="rect"><span class="arrow">&#183;</span>negative character group<span class="arrow">&#183;</span></a> <var>G</var>, and any
<a href="#dt-charexpr" class="termref" shape="rect"><span class="arrow">&#183;</span>character class expression<span class="arrow">&#183;</span></a>
<var>C</var>,&#160;
<var>G</var>&#160;<code>-</code>&#160;<var>C</var>&#160; is a valid
<a href="#dt-chargroup" class="termref" shape="rect"><span class="arrow">&#183;</span>character group<span class="arrow">&#183;</span></a>, identifying the set of all characters in
<em>C</em>(<var>G</var>)
that are not in
<em>C</em>(<var>C</var>).</p><p><span class="termdef"><a name="dt-poschargroup" id="dt-poschargroup" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>positive character group</b> consists of one or more
<a href="#dt-cgpart" class="termref" shape="rect"><span class="arrow">&#183;</span>character group parts<span class="arrow">&#183;</span></a>, concatenated
together. The
set of characters identified by a <b>positive character group</b>
is
the union of all of the sets identified
by its constituent <a href="#dt-cgpart" class="termref" shape="rect"><span class="arrow">&#183;</span>character group
parts<span class="arrow">&#183;</span></a>.</span></p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Positive Character Group</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="poschargroup" id="poschargroup" shape="rect"></a><a name="nt-posCharGroup" id="nt-posCharGroup" shape="rect"></a>[77]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>posCharGroup</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>
(
<a href="#nt-charGroupPart" shape="rect"><i>charGroupPart</i></a>
)+
</code></td></tr></tbody></table></td></tr></tbody></table><p></p><table border="1"><col width="50%" span="1" /><col width="50%" span="1" /><thead><tr><th rowspan="1" colspan="1">
For all
<a href="#dt-charrange" class="termref" shape="rect"><span class="arrow">&#183;</span>character
ranges<span class="arrow">&#183;</span></a>
<var>R</var>, all
<a href="#dt-cces" class="termref" shape="rect"><span class="arrow">&#183;</span>character class
escapes<span class="arrow">&#183;</span></a>
<var>E</var>,
and all
<a href="#dt-poschargroup" class="termref" shape="rect"><span class="arrow">&#183;</span>positive character groups<span class="arrow">&#183;</span></a>
<var>P</var>, valid
<a href="#dt-poschargroup" class="termref" shape="rect"><span class="arrow">&#183;</span>positive
charater groups<span class="arrow">&#183;</span></a>
<var>G</var> are:
</th><th rowspan="1" colspan="1">
Identifying the set of characters
<em>C</em>(<var>G</var>)
containing:
</th></tr></thead><tbody><tr><td align="center" rowspan="1" colspan="1"><var>R</var></td><td align="center" rowspan="1" colspan="1">all characters in
<em>C</em>(<var>R</var>)</td></tr><tr><td align="center" rowspan="1" colspan="1"><var>E</var></td><td align="center" rowspan="1" colspan="1">all characters in
<em>C</em>(<var>E</var>)</td></tr><tr><td align="center" rowspan="1" colspan="1"><var>R</var><var>P</var></td><td align="center" rowspan="1" colspan="1">all characters in
<em>C</em>(<var>R</var>)
and all characters in
<em>C</em>(<var>P</var>)</td></tr><tr><td align="center" rowspan="1" colspan="1"><var>E</var><var>P</var></td><td align="center" rowspan="1" colspan="1">all characters in
<em>C</em>(<var>E</var>)
and all characters in
<em>C</em>(<var>P</var>)</td></tr></tbody></table><p><span class="termdef"><a name="dt-negchargroup" id="dt-negchargroup" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>negative character group</b>
(<a href="#nt-negCharGroup" shape="rect"><i>negCharGroup</i></a>)
consists of a
'<code>^</code>'
character
followed by a <a href="#dt-poschargroup" class="termref" shape="rect"><span class="arrow">&#183;</span>positive character group<span class="arrow">&#183;</span></a>.
The set of characters identified by
a negative character group
<em>C</em>(<code>^</code><var>P</var>)
is
the set of all
characters that are <em>not</em> in
<em>C</em>(<var>P</var>).</span></p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Negative Character Group</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="negchargroup" id="negchargroup" shape="rect"></a><a name="nt-negCharGroup" id="nt-negCharGroup" shape="rect"></a>[78]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>negCharGroup</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'^' <a href="#nt-posCharGroup" shape="rect"><i>posCharGroup</i></a></code></td></tr></tbody></table></td></tr></tbody></table><p><span class="termdef"><a name="dt-cgpart" id="dt-cgpart" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>character group part</b> (<a href="#nt-charGroupPart" shape="rect"><i>charGroupPart</i></a>) is
any
of:
a single unescaped character
(<a href="#nt-SingleCharNoEsc" shape="rect"><i>SingleCharNoEsc</i></a>),
a single escaped character
(<a href="#nt-SingleCharEsc" shape="rect"><i>SingleCharEsc</i></a>),
a character class escape
(<a href="#nt-charClassEsc" shape="rect"><i>charClassEsc</i></a>),
or a character range
(<a href="#nt-charRange" shape="rect"><i>charRange</i></a>).</span>
<a name="anchor11125a" id="anchor11125a" shape="rect"></a>
</p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Character Group Part</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="charGroupPart" id="charGroupPart" shape="rect"></a><a name="nt-charGroupPart" id="nt-charGroupPart" shape="rect"></a>[79]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>charGroupPart</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code><a href="#nt-singleChar" shape="rect"><i>singleChar</i></a>
| <a href="#nt-charRange" shape="rect"><i>charRange</i></a>
|
<a href="#nt-charClassEsc" shape="rect"><i>charClassEsc</i></a>
</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="singleChar" id="singleChar" shape="rect"></a><a name="nt-singleChar" id="nt-singleChar" shape="rect"></a>[80]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>singleChar</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code><a href="#nt-SingleCharEsc" shape="rect"><i>SingleCharEsc</i></a> | <a href="#nt-SingleCharNoEsc" shape="rect"><i>SingleCharNoEsc</i></a></code></td></tr></tbody></table></td></tr></tbody></table><div class="block">If a <a href="#nt-charGroupPart" shape="rect"><i>charGroupPart</i></a> starts with a
<a href="#nt-singleChar" shape="rect"><i>singleChar</i></a> and this is immediately followed by a hyphen,
then
the following rules apply.
<ol class="enumar"><li><div class="p">If the hyphen is immediately followed by '<code>[</code>',
then the hyphen is not part of the <a href="#nt-charGroupPart" shape="rect"><i>charGroupPart</i></a>:
instead, it is recognized as a character-class subtraction operator.</div></li><li><div class="p">
If the hyphen is immediately followed by '<code>]</code>',
then the hyphen is recognized as a <a href="#nt-singleChar" shape="rect"><i>singleChar</i></a> and
is part of the <a href="#nt-charGroupPart" shape="rect"><i>charGroupPart</i></a>.
</div></li><li><div class="p">
If the hyphen is immediately followed by '<code>-[</code>',
then the hyphen is recognized as a <a href="#nt-singleChar" shape="rect"><i>singleChar</i></a> and
is part of the <a href="#nt-charGroupPart" shape="rect"><i>charGroupPart</i></a>.
</div></li><li><div class="p">
Otherwise, the hyphen <span class="rfc2119">must</span> be immediately followed by some
<a href="#nt-singleChar" shape="rect"><i>singleChar</i></a> other than a hyphen. In this case
the hyphen is not part of the <a href="#nt-charGroupPart" shape="rect"><i>charGroupPart</i></a>;
instead it is recognized, together with the immediately
preceding and following instances of <a href="#nt-singleChar" shape="rect"><i>singleChar</i></a>,
as a <a href="#nt-charRange" shape="rect"><i>charRange</i></a>.</div></li><li><div class="p">
If the hyphen is followed by any other character sequence,
then the string in which it occurs
is not recognized as a regular expression.
</div></li></ol>
It is an error if either of the two
<a href="#nt-singleChar" shape="rect"><i>singleChar</i></a>s in a
<a href="#nt-charRange" shape="rect"><i>charRange</i></a> is a
<a href="#nt-SingleCharNoEsc" shape="rect"><i>SingleCharNoEsc</i></a> comprising an unescaped hyphen.
</div><div class="note"><div class="p"><b>Note:</b> The rule just given resolves what would otherwise
be the ambiguous interpretion of some strings, e.g.
'<code>[a-k-z]</code>';
it also constrains regular expressions in ways
not expressed in the grammar. For example, the
rule (not the grammar) excludes the string
'<code>[--z]</code>'
from the
regular expression language defined here.</div></div><p><span class="termdef"><a name="dt-charrange" id="dt-charrange" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>character range</b>&#160;<var>R</var> identifies a set of
characters
<em>C</em>(<var>R</var>)
with UCS code points in a specified range.
</span>
</p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Character Range</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="charrange" id="charrange" shape="rect"></a><a name="nt-charRange" id="nt-charRange" shape="rect"></a>[81]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>charRange</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>
<a href="#nt-singleChar" shape="rect"><i>singleChar</i></a> '-' <a href="#nt-singleChar" shape="rect"><i>singleChar</i></a>
</code></td></tr></tbody></table></td></tr></tbody></table><p>
A <a href="#dt-charrange" class="termref" shape="rect"><span class="arrow">&#183;</span>character range<span class="arrow">&#183;</span></a> in the form&#160;
<var>s</var><code>-</code><var>e</var>&#160; identifies
the set
of
characters
with UCS code points greater than or equal to the code point
of <var>s</var>, but not greater than the code point of
<var>e</var>.</p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Single Unescaped Character</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="SingleCharNoEsc" id="SingleCharNoEsc" shape="rect"></a><a name="nt-SingleCharNoEsc" id="nt-SingleCharNoEsc" shape="rect"></a>[82]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>SingleCharNoEsc</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>[^\#x5B#x5D] </code></td><td rowspan="1" colspan="1"><i>/* &#160;N.B.:&#160;
#x5B = '<code>[</code>',
#x5D = '<code>]</code>'&#160; */</i></td></tr></tbody></table></td></tr></tbody></table><p>A single unescaped character
(<a href="#nt-SingleCharNoEsc" shape="rect"><i>SingleCharNoEsc</i></a>) is any character
except '<code>[</code>' or '<code>]</code>'.
There are special rules, described earlier, that
constrain
the use of the characters '<code>-</code>' and
'<code>^</code>' in order to disambiguate the syntax.</p><p>A single unescaped character
identifies the singleton set of characters containing
that character alone.</p><p>A single escaped character
(<a href="#nt-SingleCharEsc" shape="rect"><i>SingleCharEsc</i></a>), when used within a
character group, identifies the singleton set of characters
containing the character denoted by the
escape (see <a href="#cces" shape="rect">Character Class Escapes (&#167;G.4.2)</a>).</p></div><div class="div3">
<h4><a name="cces" id="cces" shape="rect"></a>G.4.2 Character Class Escapes</h4><p><span class="termdef"><a name="dt-cces" id="dt-cces" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>character class escape</b> is a short sequence of characters
that identifies a predefined
character class.&#160; The valid character class escapes are
the
<a href="#dt-ccesN" class="termref" shape="rect"><span class="arrow">&#183;</span>multi-character escapes<span class="arrow">&#183;</span></a>, and the
<a href="#dt-ccescat" class="termref" shape="rect"><span class="arrow">&#183;</span>category escapes<span class="arrow">&#183;</span></a> (including the
<a href="#dt-ccesblock" class="termref" shape="rect"><span class="arrow">&#183;</span>block escapes<span class="arrow">&#183;</span></a>).</span>
</p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Character Class Escape</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="charclassesc" id="charclassesc" shape="rect"></a><a name="nt-charClassEsc" id="nt-charClassEsc" shape="rect"></a>[83]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>charClassEsc</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>
(
<a href="#nt-MultiCharEsc" shape="rect"><i>MultiCharEsc</i></a> |
<a href="#nt-catEsc" shape="rect"><i>catEsc</i></a> |
<a href="#nt-complEsc" shape="rect"><i>complEsc</i></a>
)
</code></td></tr></tbody></table></td></tr></tbody></table><div class="div4">
<h5><a name="cces-sce" id="cces-sce" shape="rect"></a>G.4.2.1 Single-character escapes</h5><p>Closely related to the
character-class escapes are the single-character escapes.
<span class="termdef"><a name="dt-cces1" id="dt-cces1" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>single-character escape</b> identifies a set containing
only one
character&#8212;usually
because that character is difficult or
impossible to write directly into a <a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expression<span class="arrow">&#183;</span></a>.</span></p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Single Character Escape</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="singlecharesc" id="singlecharesc" shape="rect"></a><a name="nt-SingleCharEsc" id="nt-SingleCharEsc" shape="rect"></a>[84]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>SingleCharEsc</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E]</code></td><td rowspan="1" colspan="1"><i>/* N.B.:&#160;
#x2D = '<code>-</code>', #x5B = '<code>[</code>', #x5D =
'<code>]</code>', #x5E = '<code>^</code>' */</i></td></tr></tbody></table></td></tr></tbody></table><p></p><table border="1"><col width="50%" span="1" /><col width="50%" span="1" /><thead><tr><th rowspan="1" colspan="1">The valid
<a href="#dt-cces1" class="termref" shape="rect"><span class="arrow">&#183;</span>single
character escapes<span class="arrow">&#183;</span></a> <var>R</var> are:</th><th rowspan="1" colspan="1">Identifying the set of characters
containing:</th></tr></thead><tbody><tr><td align="center" rowspan="1" colspan="1"><code>\n</code></td><td align="center" rowspan="1" colspan="1">the newline character (#xA)</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\r</code></td><td align="center" rowspan="1" colspan="1">the return character (#xD)</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\t</code></td><td align="center" rowspan="1" colspan="1">the tab character (#x9)</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\\</code></td><td align="center" rowspan="1" colspan="1"><code>\</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\|</code></td><td align="center" rowspan="1" colspan="1"><code>|</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\.</code></td><td align="center" rowspan="1" colspan="1"><code>.</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\-</code></td><td align="center" rowspan="1" colspan="1"><code>-</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\^</code></td><td align="center" rowspan="1" colspan="1"><code>^</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\?</code></td><td align="center" rowspan="1" colspan="1"><code>?</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\*</code></td><td align="center" rowspan="1" colspan="1"><code>*</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\+</code></td><td align="center" rowspan="1" colspan="1"><code>+</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\{</code></td><td align="center" rowspan="1" colspan="1"><code>{</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\}</code></td><td align="center" rowspan="1" colspan="1"><code>}</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\(</code></td><td align="center" rowspan="1" colspan="1"><code>(</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\)</code></td><td align="center" rowspan="1" colspan="1"><code>)</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\[</code></td><td align="center" rowspan="1" colspan="1"><code>[</code></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\]</code></td><td align="center" rowspan="1" colspan="1"><code>]</code></td></tr></tbody></table></div><div class="div4">
<h5><a name="cces-catesc" id="cces-catesc" shape="rect"></a>G.4.2.2 Category escapes</h5><p><span class="termdef"><a name="dt-ccescat" id="dt-ccescat" title="" shape="rect">[Definition:]&#160;&#160;</a>
<a href="#UnicodeDB" shape="rect">[Unicode Database]</a> specifies a number of possible values for
the "General Category" property and provides mappings
from code points to specific character properties.&#160;
The set containing all characters that have property
<var>X</var>
can be identified with a <b>category escape</b>&#160;<code>\p{</code><var>X</var><code>}</code> (using a lower-case
'p').&#160;
The complement of this set is specified with the
<b>category
escape</b>&#160;
<code>\P{</code><var>X</var><code>}</code>
(using an upper-case 'P').&#160;
For all <var>X</var>, if <var>X</var> is a recognized
character-property code, then
<code>[\P{<var>X</var>}]</code>
= <code>[^\p{<var>X</var>}]</code>.
</span></p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Category Escape</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="catesc" id="catesc" shape="rect"></a><a name="nt-catEsc" id="nt-catEsc" shape="rect"></a>[85]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>catEsc</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'\p{' <a href="#nt-charProp" shape="rect"><i>charProp</i></a> '}'</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="complesc" id="complesc" shape="rect"></a><a name="nt-complEsc" id="nt-complEsc" shape="rect"></a>[86]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>complEsc</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'\P{' <a href="#nt-charProp" shape="rect"><i>charProp</i></a> '}'</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="charprop" id="charprop" shape="rect"></a><a name="nt-charProp" id="nt-charProp" shape="rect"></a>[87]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>charProp</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code><a href="#nt-IsCategory" shape="rect"><i>IsCategory</i></a> | <a href="#nt-IsBlock" shape="rect"><i>IsBlock</i></a></code></td></tr></tbody></table></td></tr></tbody></table><p>
<a href="#UnicodeDB" shape="rect">[Unicode Database]</a> is subject to future revision.&#160; For
example, the mapping from code points to character properties might be
updated. All <a href="#dt-minimally-conforming" class="termref" shape="rect"><span class="arrow">&#183;</span>minimally conforming<span class="arrow">&#183;</span></a> processors
<a href="#dt-must" class="termref" shape="rect"><span class="arrow">&#183;</span>must<span class="arrow">&#183;</span></a> support the character properties defined in
the version of <a href="#UnicodeDB" shape="rect">[Unicode Database]</a> cited in the
normative references (<a href="#normative-biblio" shape="rect">Normative (&#167;K.1)</a>)or in
some later version of the Unicode database.&#160; Implementors are encouraged to support the
character properties defined in any later versions. When the
implementation supports multiple versions of the Unicode database, and
they differ in salient respects (e.g. different properties are
assigned to the same character in different versions of the database),
then it is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> which set of property definitions is used
for any given assessment episode.
</p><div class="note"><div class="p"><b>Note:</b> In order to benefit from continuing work on the Unicode database,
a conforming implementation might by default use the latest supported
version of the character properties. In order to maximize consistency
with other implementations of this specification, however, an
implementation might choose to provide
<a href="#dt-useroption" class="termref" shape="rect"><span class="arrow">&#183;</span>user options<span class="arrow">&#183;</span></a> to specify the
use of the version of the database cited in the normative references.
The <code>PropertyAliases.txt</code>
and <code>PropertyValueAliases.txt</code> files of
the Unicode database may be helpful to implementors in this connection.
</div></div><p>
For convenience, the following table lists
the values of the "General Category" property in the
version
of <a href="#UnicodeDB" shape="rect">[Unicode Database]</a>
cited in the normative references
(<a href="#normative-biblio" shape="rect">Normative (&#167;K.1)</a>).&#160;
The properties with single-character names are not defined in
<a href="#UnicodeDB" shape="rect">[Unicode Database]</a>.&#160; The value of a single-character
property is the union of the values of all the two-character properties
whose first character is the character in question.&#160; For example,
for <code>N</code>, the union of <code>Nd</code>, <code>Nl</code> and
<code>No</code>.</p><div class="note"><div class="p"><b>Note:</b> As of this publication the Java regex
library does <em>not</em> include <code>Cn</code> in its definition of
<code>C</code>, so that definition cannot be used without modification
in conformant implementations.</div></div><table border="1" align="center"><tbody><tr><th rowspan="1" colspan="1">Category</th><th rowspan="1" colspan="1">Property</th><th rowspan="1" colspan="1">Meaning</th></tr><tr><td rowspan="6" colspan="1">Letters</td><td align="center" rowspan="1" colspan="1">L</td><td rowspan="1" colspan="1">All Letters</td></tr><tr><td align="center" rowspan="1" colspan="1">Lu</td><td rowspan="1" colspan="1">uppercase</td></tr><tr><td align="center" rowspan="1" colspan="1">Ll</td><td rowspan="1" colspan="1">lowercase</td></tr><tr><td align="center" rowspan="1" colspan="1">Lt</td><td rowspan="1" colspan="1">titlecase</td></tr><tr><td align="center" rowspan="1" colspan="1">Lm</td><td rowspan="1" colspan="1">modifier</td></tr><tr><td align="center" rowspan="1" colspan="1">Lo</td><td rowspan="1" colspan="1">other</td></tr><tr><td colspan="3" rowspan="1">&#160;</td></tr><tr><td rowspan="4" colspan="1">Marks</td><td align="center" rowspan="1" colspan="1">M</td><td rowspan="1" colspan="1">All Marks</td></tr><tr><td align="center" rowspan="1" colspan="1">Mn</td><td rowspan="1" colspan="1">nonspacing</td></tr><tr><td align="center" rowspan="1" colspan="1">Mc</td><td rowspan="1" colspan="1">spacing combining</td></tr><tr><td align="center" rowspan="1" colspan="1">Me</td><td rowspan="1" colspan="1">enclosing</td></tr><tr><td colspan="3" rowspan="1">&#160;</td></tr><tr><td rowspan="4" colspan="1">Numbers</td><td align="center" rowspan="1" colspan="1">N</td><td rowspan="1" colspan="1">All Numbers</td></tr><tr><td align="center" rowspan="1" colspan="1">Nd</td><td rowspan="1" colspan="1">decimal digit</td></tr><tr><td align="center" rowspan="1" colspan="1">Nl</td><td rowspan="1" colspan="1">letter</td></tr><tr><td align="center" rowspan="1" colspan="1">No</td><td rowspan="1" colspan="1">other</td></tr><tr><td colspan="3" rowspan="1">&#160;</td></tr><tr><td rowspan="8" colspan="1">Punctuation</td><td align="center" rowspan="1" colspan="1">P</td><td rowspan="1" colspan="1">All Punctuation</td></tr><tr><td align="center" rowspan="1" colspan="1">Pc</td><td rowspan="1" colspan="1">connector</td></tr><tr><td align="center" rowspan="1" colspan="1">Pd</td><td rowspan="1" colspan="1">dash</td></tr><tr><td align="center" rowspan="1" colspan="1">Ps</td><td rowspan="1" colspan="1">open</td></tr><tr><td align="center" rowspan="1" colspan="1">Pe</td><td rowspan="1" colspan="1">close</td></tr><tr><td align="center" rowspan="1" colspan="1">Pi</td><td rowspan="1" colspan="1">initial quote
(may behave like Ps or Pe depending on usage)</td></tr><tr><td align="center" rowspan="1" colspan="1">Pf</td><td rowspan="1" colspan="1">final quote
(may behave like Ps or Pe depending on usage)</td></tr><tr><td align="center" rowspan="1" colspan="1">Po</td><td rowspan="1" colspan="1">other</td></tr><tr><td colspan="3" rowspan="1">&#160;</td></tr><tr><td rowspan="4" colspan="1">Separators</td><td align="center" rowspan="1" colspan="1">Z</td><td rowspan="1" colspan="1">All Separators</td></tr><tr><td align="center" rowspan="1" colspan="1">Zs</td><td rowspan="1" colspan="1">space</td></tr><tr><td align="center" rowspan="1" colspan="1">Zl</td><td rowspan="1" colspan="1">line</td></tr><tr><td align="center" rowspan="1" colspan="1">Zp</td><td rowspan="1" colspan="1">paragraph</td></tr><tr><td colspan="3" rowspan="1">&#160;</td></tr><tr><td rowspan="5" colspan="1">Symbols</td><td align="center" rowspan="1" colspan="1">S</td><td rowspan="1" colspan="1">All Symbols</td></tr><tr><td align="center" rowspan="1" colspan="1">Sm</td><td rowspan="1" colspan="1">math</td></tr><tr><td align="center" rowspan="1" colspan="1">Sc</td><td rowspan="1" colspan="1">currency</td></tr><tr><td align="center" rowspan="1" colspan="1">Sk</td><td rowspan="1" colspan="1">modifier</td></tr><tr><td align="center" rowspan="1" colspan="1">So</td><td rowspan="1" colspan="1">other</td></tr><tr><td colspan="3" rowspan="1">&#160;</td></tr><tr><td rowspan="5" colspan="1">Other</td><td align="center" rowspan="1" colspan="1">C</td><td rowspan="1" colspan="1">All Others</td></tr><tr><td align="center" rowspan="1" colspan="1">Cc</td><td rowspan="1" colspan="1">control</td></tr><tr><td align="center" rowspan="1" colspan="1">Cf</td><td rowspan="1" colspan="1">format</td></tr><tr><td align="center" rowspan="1" colspan="1">Co</td><td rowspan="1" colspan="1">private use</td></tr><tr><td align="center" rowspan="1" colspan="1">Cn</td><td rowspan="1" colspan="1">not assigned</td></tr></tbody></table><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Categories</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="cats" id="cats" shape="rect"></a><a name="nt-IsCategory" id="nt-IsCategory" shape="rect"></a>[88]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>IsCategory</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>
<a href="#nt-Letters" shape="rect"><i>Letters</i></a> |
<a href="#nt-Marks" shape="rect"><i>Marks</i></a> |
<a href="#nt-Numbers" shape="rect"><i>Numbers</i></a> |
<a href="#nt-Punctuation" shape="rect"><i>Punctuation</i></a> |
<a href="#nt-Separators" shape="rect"><i>Separators</i></a> |
<a href="#nt-Symbols" shape="rect"><i>Symbols</i></a> |
<a href="#nt-Others" shape="rect"><i>Others</i></a>
</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="lets" id="lets" shape="rect"></a><a name="nt-Letters" id="nt-Letters" shape="rect"></a>[89]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>Letters</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'L' [ultmo]?</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="marks" id="marks" shape="rect"></a><a name="nt-Marks" id="nt-Marks" shape="rect"></a>[90]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>Marks</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'M' [nce]?</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="nums" id="nums" shape="rect"></a><a name="nt-Numbers" id="nt-Numbers" shape="rect"></a>[91]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>Numbers</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'N' [dlo]?</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="punc" id="punc" shape="rect"></a><a name="nt-Punctuation" id="nt-Punctuation" shape="rect"></a>[92]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>Punctuation</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'P' [cdseifo]?</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="seps" id="seps" shape="rect"></a><a name="nt-Separators" id="nt-Separators" shape="rect"></a>[93]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>Separators</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'Z' [slp]?</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="syms" id="syms" shape="rect"></a><a name="nt-Symbols" id="nt-Symbols" shape="rect"></a>[94]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>Symbols</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'S' [mcko]?</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="others" id="others" shape="rect"></a><a name="nt-Others" id="nt-Others" shape="rect"></a>[95]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>Others</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'C' [cfon]?</code></td></tr></tbody></table></td></tr></tbody></table><div class="note"><div class="p"><b>Note:</b> The properties mentioned above exclude the Cs property.&#160; The Cs property identifies
"surrogate" characters, which do not occur at the
level of the "character abstraction" that XML
instance documents operate on.</div></div></div><div class="div4">
<h5><a name="cces-blockesc" id="cces-blockesc" shape="rect"></a>G.4.2.3 Block escapes</h5><p>
<a href="#UnicodeDB" shape="rect">[Unicode Database]</a> groups the code points of the Universal
Character Set (UCS) into a number of blocks such as Basic Latin (i.e.,
ASCII), Latin-1 Supplement, Hangul Jamo, CJK Compatibility, etc.&#160;
The block-escape construct allows regular expressions to refer to sets
of characters by the name of the block in which they appear, using a
<a href="#dt-normalized-block-name" class="termref" shape="rect"><span class="arrow">&#183;</span>normalized block name<span class="arrow">&#183;</span></a>.
</p><p>
<span class="termdef"><a name="dt-normalized-block-name" id="dt-normalized-block-name" title="" shape="rect">[Definition:]&#160;&#160;</a>
For any Unicode block, the <b>normalized block name</b> of that
block is the string of characters formed by stripping out white space
and underbar characters from the block name as given in <a href="#UnicodeDB" shape="rect">[Unicode Database]</a>, while retaining hyphens and preserving case
distinctions.</span>
</p><p>
<span class="termdef"><a name="dt-ccesblock" id="dt-ccesblock" title="" shape="rect">[Definition:]&#160;&#160;</a>
A <b>block escape</b> expression denotes the set of characters
in a given Unicode block. For any Unicode block <var>B</var>, with <a href="#dt-normalized-block-name" class="termref" shape="rect"><span class="arrow">&#183;</span>normalized block name<span class="arrow">&#183;</span></a> <var>X</var>, the set containing all
characters defined in block <var>B</var> can be identified with the <b>block
escape</b> <code>\p{Is<var>X</var>}</code> (using lower-case
'p'). The complement of this set is denoted by the
<b>block escape</b> <code>\P{Is<var>X</var>}</code> (using upper-case
'P'). For all <var>X</var>, if <var>X</var> is a normalized block name
recognized by the processor, then
<code>[\P{Is</code><var>X</var><code>}]</code> =
<code>[^\p{Is</code><var>X</var><code>}]</code>.
</span>
</p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Block Escape</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="blockesc" id="blockesc" shape="rect"></a><a name="nt-IsBlock" id="nt-IsBlock" shape="rect"></a>[96]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>IsBlock</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'Is' [a-zA-Z0-9#x2D]+</code></td><td rowspan="1" colspan="1"><i>/* &#160;N.B.:&#160;
#x2D = '<code>-</code>' */</i></td></tr></tbody></table></td></tr></tbody></table><p id="eg-isbasiclatin">
For example, the <a href="#dt-ccesblock" class="termref" shape="rect"><span class="arrow">&#183;</span>block escape<span class="arrow">&#183;</span></a> for identifying the
ASCII characters is '<code>\p{IsBasicLatin}</code>'.</p><div class="note"><div class="p"><b>Note:</b> Current versions of the Unicode database recommend that whenever
block names are being matched hyphens, underbars, and white space
should be dropped and letters folded to a single case, so both the
string '<code>BasicLatin</code>' and the string '<code>-- basic
LATIN --</code>' will match the block name "Basic Latin".
</div><div class="p">The handling of block names in block escapes differs from this
behavior in two ways. First, the normalized block names defined in
this specification do not suppress hyphens in the Unicode block
names and do not level case distinctions. The normalized form of the
block name '<code>Latin-1 Supplement</code>', for example, is thus
'<code>Latin-1Supplement</code>', not
'<code>latin1supplement</code>' or
'<code>LATIN1SUPPLEMENT</code>'. Second, XSD processors are not
required to perform any normalization at all upon the block name as
given in the <a href="#dt-ccesblock" class="termref" shape="rect"><span class="arrow">&#183;</span>block escape<span class="arrow">&#183;</span></a>, so
'<code>\p{Latin-1Supplement}</code>' will be recognized
as a reference to the Latin-1 Supplement block, but
'<code>\p{Is Latin-1 supplement}</code>' will not.
</div></div><p>
<a href="#UnicodeDB" shape="rect">[Unicode Database]</a> has been revised since XSD 1.0 was
published, and is subject to future revision. In particular, the
grouping of code points into blocks has changed, and may change
again. All <a href="#dt-minimally-conforming" class="termref" shape="rect"><span class="arrow">&#183;</span>minimally conforming<span class="arrow">&#183;</span></a> processors <span class="rfc2119">must</span>
support the blocks defined in the version of <a href="#UnicodeDB" shape="rect">[Unicode Database]</a>
cited in the normative references (<a href="#normative-biblio" shape="rect">Normative (&#167;K.1)</a>) or in some
later version of the Unicode database.
Implementors
are encouraged to support the blocks defined in earlier and/or later
versions of the Unicode Standard. When the implementation supports
multiple versions of the Unicode database, and they differ in salient
respects (e.g. different characters are assigned to a given block in
different versions of the database), then it is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> which
set of block definitions is used for any given assessment episode.
</p><div class="block">In particular, the version of <a href="#UnicodeDB" shape="rect">[Unicode Database]</a> referenced in XSD 1.0 (namely, Unicode 3.1)
contained a number of
blocks which have been renamed in later versions of the
database Since the
older block names may appear in regular expressions within
XSD 1.0 schemas, implementors are encouraged to support the superseded
block names in XSD 1.1 processors for compatibility, either by default
or <a href="#dt-useroption" class="termref" shape="rect"><span class="arrow">&#183;</span>at user option<span class="arrow">&#183;</span></a>. At the time this
document was prepared, block names from Unicode 3.1 known to have been
superseded in this way included:
<ul><li><div class="p">#x0370 - #x03FF: Greek</div></li><li><div class="p">#x20D0 - #x20FF: CombiningMarksforSymbols</div></li><li><div class="p">#xE000 - #xF8FF: PrivateUse</div></li><li><div class="p">#xF0000 - #xFFFFD: PrivateUse</div></li><li><div class="p">#x100000 - #x10FFFD: PrivateUse</div></li></ul>
</div><p>
A tabulation of normalized block names for Unicode 2.0.0 and
later is given in <a href="#unicode-escapes" shape="rect">[Unicode block names]</a>.
</p><p>For the treatment of regular expressions
containing unrecognized Unicode block names, see
<a href="#sec-unrecognized-catesc" shape="rect">Unrecognized category escapes (&#167;G.4.2.4)</a>.</p></div><div class="div4">
<h5><a name="sec-unrecognized-catesc" id="sec-unrecognized-catesc" shape="rect"></a>G.4.2.4 Unrecognized category escapes</h5><p>A string of the form "<code>\p{<var>S</var>}</code>"
constitutes a <a href="#nt-catEsc" shape="rect"><i>catEsc</i></a> (category escape), and similarly
a string of the form "<code>\P{<var>S</var>}</code>" constitutes
a <a href="#nt-complEsc" shape="rect"><i>complEsc</i></a> (category-complement escape) only if the
string <var>S</var> matches either <a href="#nt-IsCategory" shape="rect"><i>IsCategory</i></a> or <a href="#nt-IsBlock" shape="rect"><i>IsBlock</i></a>.</p><div class="note"><div class="p"><b>Note:</b> If an unknown string of characters is used in a
category escape instead of a known character category code
or a string matching the <a href="#nt-IsBlock" shape="rect"><i>IsBlock</i></a> production,
the resulting string will (normally) not match the
<a href="#nt-regExp" shape="rect"><i>regExp</i></a> production and thus not be a regular
expression as defined in this specification. If the
non-<a href="#nt-regExp" shape="rect"><i>regExp</i></a> string occurs where a regular
expression is required, the schema document will be in
<a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a>.</div></div><p>Any string of hyphens, digits, and Basic Latin characters
beginning with '<code>Is</code>' will match the non-terminal <a href="#nt-IsBlock" shape="rect"><i>IsBlock</i></a> and thus be allowed in a regular expression.
Most of these strings, however, will not denote any Unicode block.
Processors <span class="rfc2119">should</span> issue a warning if they encounter a regular
expression using a block name they do not recognize. Processors
<span class="rfc2119">may</span> <a href="#dt-useroption" class="termref" shape="rect"><span class="arrow">&#183;</span>at user option<span class="arrow">&#183;</span></a> treat unrecognized block names as <a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>errors<span class="arrow">&#183;</span></a> in
the schema.
</p><div class="note"><div class="p"><b>Note:</b> Treating unrecognized block names as errors increases the
likelihood that errors in spelling the block name will be detected
and can be helpful in checking the correctness of schema
documents. However, it also decreases the portability of schema
documents among processors supporting different versions of
<a href="#UnicodeDB" shape="rect">[Unicode Database]</a>; it is for this reason that
processors are allowed to treat unrecognized block names as
errors only when the user has explicitly requested this
behavior.
</div></div><p>If a string "<code>Is<var>X</var></code>" matches the
non-terminal <a href="#nt-IsBlock" shape="rect"><i>IsBlock</i></a> but <var>X</var> is not a recognized
block name, then the expressions
"<code>\p{Is<var>X</var>}</code>" and
"<code>\P{Is<var>X</var>}</code>" each denote the set of all
characters.
Processors <span class="rfc2119">may</span> <a href="#dt-useroption" class="termref" shape="rect"><span class="arrow">&#183;</span>at user option<span class="arrow">&#183;</span></a> treat both
"<code>\p{Is<var>X</var>}</code>" and
"<code>\P{Is<var>X</var>}</code>" as
denoting the empty set, instead of the set of all characters.
</p><div class="note"><div class="p"><b>Note:</b> The meaning defined for a block escape with an unrecognized
block name makes it synonymous with the regular expression
'<code>.|[\n\r]</code>'. A processor which does not recognize
the block name will thus not enforce the constraint that the
characters matched are in, or are not in, the block in question.
Any string which satisfies the regular expression as written will
be accepted, but not all strings accepted will actually satisfy
the expression as written: some strings which do not satisfy the
expression as written will also be accepted. So some invalid input
will be wrongly identified as invalid.</div><div class="p">If (at <a href="#dt-useroption" class="termref" shape="rect"><span class="arrow">&#183;</span>user option<span class="arrow">&#183;</span></a>) the expressions are treated as denoting the
empty set, then the converse is true: any string which fails to
satisfy the expression as written will be rejected, but not all
strings rejected by the processor will actually have failed to satisfy
the expression as written. So some valid input will be wrongly
identified as invalid.</div><div class="p">Which behavior is preferable in concrete circumstances depends on
the relative cost of failure to accept valid input (false negatives)
and failure to reject invalid input (false positives). It is for
this reason that processors are allowed to provide <a href="#dt-useroption" class="termref" shape="rect"><span class="arrow">&#183;</span>user options<span class="arrow">&#183;</span></a> to
control the behavior. The principle of being liberal in accepting
input (often called Postel's Law) suggests that the default
behavior should be to accept strings not known to be invalid,
rather than the converse; it is for this reason that block escapes
with unknown block names should be treated as matching any character
unless the user explicitly requests the alternative behavior.
</div></div></div><div class="div4">
<h5><a name="cces-mce" id="cces-mce" shape="rect"></a>G.4.2.5 Multi-character escapes</h5><p><span class="termdef"><a name="dt-ccesN" id="dt-ccesN" title="" shape="rect">[Definition:]&#160;&#160;</a>A
<b>multi-character escape</b> provides a simple way to identify
any of
a commonly used set of characters:</span>&#160;
<span class="termdef"><a name="dt-wcchar" id="dt-wcchar" title="" shape="rect">[Definition:]&#160;&#160;</a>
The <b>wildcard character</b> is a metacharacter which matches
almost any single character:</span></p><table class="scrap" cellpadding="5" border="1" width="100%"><tbody><tr align="left"><td rowspan="1" colspan="1"><strong><font color="red">Multi-Character Escape</font></strong></td></tr><tr><td rowspan="1" colspan="1"><table border="0"><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="multicharesc" id="multicharesc" shape="rect"></a><a name="nt-MultiCharEsc" id="nt-MultiCharEsc" shape="rect"></a>[97]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>MultiCharEsc</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'\' [sSiIcCdDwW]</code></td></tr></tbody><tbody><tr valign="baseline"><td rowspan="1" colspan="1"><a name="wildcardesc" id="wildcardesc" shape="rect"></a><a name="nt-WildcardEsc" id="nt-WildcardEsc" shape="rect"></a>[98]&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>WildcardEsc</code></td><td rowspan="1" colspan="1">&#160;&#160;&#160;::=&#160;&#160;&#160;</td><td rowspan="1" colspan="1"><code>'.'</code></td></tr></tbody></table></td></tr></tbody></table><p></p><table border="1" align="center" cellpadding="5"><col width="33%" span="1" /><col width="33%" span="1" /><col width="33%" span="1" /><thead><tr><th rowspan="1" colspan="1">Character sequence</th><th rowspan="1" colspan="1">Equivalent <a href="#dt-charclass" class="termref" shape="rect"><span class="arrow">&#183;</span>character class<span class="arrow">&#183;</span></a></th></tr></thead><tbody><tr><td align="center" rowspan="1" colspan="1"><code>.</code></td><td align="center" rowspan="1" colspan="1">[^\n\r]</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\s</code></td><td align="center" rowspan="1" colspan="1">[#x20\t\n\r]</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\S</code></td><td align="center" rowspan="1" colspan="1">[^\s]</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\i</code></td><td align="center" rowspan="1" colspan="1">
the set of initial name characters, those
<a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>matched<span class="arrow">&#183;</span></a> by
<a href="http://www.w3.org/TR/xml11/#NT-NameStartChar" shape="rect">NameStartChar</a> in <a href="#XML" shape="rect">[XML]</a>
</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\I</code></td><td align="center" rowspan="1" colspan="1">[^\i]</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\c</code></td><td align="center" rowspan="1" colspan="1">
the set of name characters, those
<a href="#dt-match" class="termref" shape="rect"><span class="arrow">&#183;</span>matched<span class="arrow">&#183;</span></a> by
<a href="http://www.w3.org/TR/xml11/#NT-NameChar" shape="rect">NameChar</a></td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\C</code></td><td align="center" rowspan="1" colspan="1">[^\c]</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\d</code></td><td align="center" rowspan="1" colspan="1">\p{Nd}</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\D</code></td><td align="center" rowspan="1" colspan="1">[^\d]</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\w</code></td><td align="center" rowspan="1" colspan="1">
[#x0000-#x10FFFF]-[\p{P}\p{Z}\p{C}]
(<em>all characters except the set of "punctuation",
"separator" and "other" characters</em>)
</td></tr><tr><td align="center" rowspan="1" colspan="1"><code>\W</code></td><td align="center" rowspan="1" colspan="1">[^\w]</td></tr></tbody></table><div class="note"><div class="p"><b>Note:</b>
The <a href="#dt-regex" class="termref" shape="rect"><span class="arrow">&#183;</span>regular expression<span class="arrow">&#183;</span></a> language defined here does not
attempt to provide a general solution to "regular expressions" over
UCS character sequences.&#160; In particular, it does not easily provide
for matching sequences of base characters and combining marks.
The language is targeted at support of "Level 1" features as defined in
<a href="#unicodeRegEx" shape="rect">[Unicode Regular Expression Guidelines]</a>.&#160; It is hoped that future versions of this
specification will provide support for "Level 2" features.
</div></div></div></div></div></div><div class="div1">
<h2><a name="idef-idep" id="idef-idep" shape="rect"></a>H Implementation-defined and implementation-dependent features (normative)</h2><div class="div2">
<h3><span class="nav"> <a href="#impl-dep" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="impl-def" id="impl-def" shape="rect"></a>H.1 Implementation-defined features</h3><p>The following features in this specification are <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a>.
Any software which claims to conform to this specification (or to the
specification of any host language which embeds
<em>XSD 1.1: Datatypes</em>) <span class="rfc2119">must</span> describe how these choices
have been exercised, in documentation which accompanies any conformance claim.
</p><ol class="enumar"><li><div class="p">For the datatypes which depend on
<a href="#XML" shape="rect">[XML]</a> or <a href="#XMLNS" shape="rect">[Namespaces in XML]</a>, it is
<a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether a conforming processor takes the relevant
definitions from
<a href="#XML" shape="rect">[XML]</a> and <a href="#XMLNS" shape="rect">[Namespaces in XML]</a>, or
from
<a href="#XML1.0" shape="rect">[XML 1.0]</a> and <a href="#XMLNS1.0" shape="rect">[Namespaces in XML 1.0]</a>.
Implementations <span class="rfc2119">may</span> support either
the form of these datatypes based on version 1.0 of those
specifications, or the form based on version 1.1, or both.
</div></li><li><div class="p">For the datatypes with infinite <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a>, it
is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether conforming processors
set a limit on the size of the values supported.
If such limits are set, they <span class="rfc2119">must</span> be documented,
and the limits <span class="rfc2119">must</span> be equal to, or exceed, the
minimal limits specified in
<a href="#partial-implementation" shape="rect">Partial Implementation of Infinite Datatypes (&#167;5.4)</a>.
.</div></li><li><div class="p">It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes other than
those defined in this specification are supported.</div><div class="p">For each <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> datatype, a <a href="#std" class="compref" shape="rect">Simple Type Definition</a>
<span class="rfc2119">must</span> be
specified which conforms to the rules given in
<a href="#builtin-stds" shape="rect">Built-in Simple Type Definitions (&#167;4.1.6)</a>.
</div><div class="p">
In addition, the following information
<span class="rfc2119">must</span> be provided:<ol class="enumla"><li><div class="p">The nature of the datatype's <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>, <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>,
and <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>.</div></li><li><div class="p">The nature of the equality relation; in particular, how to determine
whether two values which are not identical are equal.</div><div class="note"><div class="p"><b>Note:</b> There is no requirement that equality be distinct from identity,
but it <span class="rfc2119">may</span> be.</div></div></li><li><div class="p">The values of the <a href="#dt-fundamental-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>fundamental facets<span class="arrow">&#183;</span></a>.</div></li><li><div class="p">Which of the <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> defined in this specification
are applicable to the datatype (and <span class="rfc2119">may</span> thus be used in
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a> from it), and what they mean when
applied to it.</div></li><li><div class="p">If <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> are supported, which of those
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> are applicable to the datatype, and what they
mean when applied to it.</div></li><li><div class="p">What URI reference (more precisely, what <a href="#anyURI" shape="rect">anyURI</a> value)
is to be used to refer to the datatype, analogous to those provided
for the datatypes defined here in section
<a href="#built-in-datatypes" shape="rect">Built-in Datatypes and Their Definitions (&#167;3)</a>.</div><div class="note"><div class="p"><b>Note:</b> It is convenient if the URI for a datatype and the
<a href="http://www.w3.org/TR/2004/REC-xml-names11-20040204/#dt-expname" shape="rect">expanded name</a> of its simple type definition are related by a
simple mapping, like the URIs given for the <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatypes
in <a href="#built-in-datatypes" shape="rect">Built-in Datatypes and Their Definitions (&#167;3)</a>. However, this is not
a requirement.</div></div></li><li><div class="p">For each <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facet<span class="arrow">&#183;</span></a> given a value for the new <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>,
what URI reference (more precisely, what <a href="#anyURI" shape="rect">anyURI</a> value)
is to be used to refer to the usage of that facet on the datatype,
analogous to those provided, for the <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatypes, in section
<a href="#built-in-datatypes" shape="rect">Built-in Datatypes and Their Definitions (&#167;3)</a>.</div><div class="note"><div class="p"><b>Note:</b> As specified normatively elsewhere, the set of facets given values
will at the very least include the <a href="#f-w" class="compref" shape="rect">whiteSpace</a> facet.</div></div></li></ol>
</div><div class="p">The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of the <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatype <span class="rfc2119">must</span> be disjoint
from those of the other <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes.</div><div class="p">The <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> defined for an <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> primitive
<span class="rfc2119">must</span> be a total function from the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> onto the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>. That is, (1) each <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> in the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>
<span class="rfc2119">must</span> map to exactly one value, and (2) each value <span class="rfc2119">must</span> be
the image of at least one member of the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>, and
<span class="rfc2119">may</span> be the image of more than one.</div><div class="p">For consistency with the <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> defined here,
implementors who define new <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes <span class="rfc2119">should</span> allow
the <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a> and <a href="#dt-enumeration" class="termref" shape="rect"><span class="arrow">&#183;</span>enumeration<span class="arrow">&#183;</span></a>
facets to apply.
</div><div class="p">The implementor <span class="rfc2119">should</span> specify a <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a>
for the datatype if practicable.</div></li><li><div class="p">It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> other than
those defined in this specification are supported.</div><div class="p">For each <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> facet, the following information
<span class="rfc2119">must</span> be provided:<ol class="enumla"><li><div class="p">What properties the facet has, viewed as a schema component.</div><div class="note"><div class="p"><b>Note:</b> For most <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> facets, the structural pattern used
for most <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> defined in this specification is
expected to be satisfactory, but other structures <span class="rfc2119">may</span> be specified.</div></div></li><li><div class="p">Whether the facet is a <a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a>, <a href="#dt-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical<span class="arrow">&#183;</span></a>, or
<a href="#dt-value-based" class="termref" shape="rect"><span class="arrow">&#183;</span>value-based<span class="arrow">&#183;</span></a> facet.</div></li><li><div class="p">Whether restriction of the facet takes the form of replacing
a less restrictive facet value with a more restrictive value
(as in the <a href="#dt-minInclusive" class="termref" shape="rect"><span class="arrow">&#183;</span>minInclusive<span class="arrow">&#183;</span></a> and most other
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> defined in this specification) or
of adding new values to a set of facet values (as
for the <a href="#dt-pattern" class="termref" shape="rect"><span class="arrow">&#183;</span>pattern<span class="arrow">&#183;</span></a> facet). In the former case,
the information provided <span class="rfc2119">must</span> also specify how to determine
which of two given values is more restrictive (and thus can
be used to restrict the other).</div><div class="p">When an <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> facet is used in <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a>, the
new value <span class="rfc2119">must</span> be at least as restrictive as the existing
value, if any.</div><div class="note"><div class="p"><b>Note:</b> The effect of the preceding paragraph is to ensure that
a type derived by <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a> using an <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a>
facet does not allow, or appear to allow, values not present
in the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.</div></div></li><li><div class="p">What <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes the new
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facet<span class="arrow">&#183;</span></a> applies to, and what it
means when applied to them.</div><div class="p">For a <a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> facet, how to compute the result
of applying the facet value to any given <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a>.</div><div class="p">For a <a href="#dt-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical<span class="arrow">&#183;</span></a> facet, how to tell whether any given
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> is facet-valid with respect to it.</div><div class="p">For a <a href="#dt-value-based" class="termref" shape="rect"><span class="arrow">&#183;</span>value-based<span class="arrow">&#183;</span></a> facet, how to tell whether any
given value in the relevant <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes
is facet-valid with respect to it.</div><div class="note"><div class="p"><b>Note:</b> The host language <span class="rfc2119">may</span> choose to specify that <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a>
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> are applicable to <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>
datatypes; this information is necessary to make the
<a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> facet usable in such host languages.
</div></div></li><li><div class="p">What URI reference (more precisely, what <a href="#anyURI" shape="rect">anyURI</a> value)
is to be used to refer to the facet, analogous to those provided
for the datatypes defined here in section
<a href="#built-in-datatypes" shape="rect">Built-in Datatypes and Their Definitions (&#167;3)</a>.</div></li><li><div class="p">What element is to be used in XSD schema documents to apply the facet
in the course of <a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a>. A schema document <span class="rfc2119">must</span> be
provided with an element declaration for each <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> facet;
the element declarations <span class="rfc2119">should</span> specify <code>xs:facet</code> as
their substitution-group head.</div><div class="note"><div class="p"><b>Note:</b> The elements' <a href="http://www.w3.org/TR/2004/REC-xml-names11-20040204/#dt-expname" shape="rect">expanded names</a> are used by the condition-inclusion
mechanism of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a> to allow schema authors to test whether
a particular facet is supported and adjust the schema document's
contents accordingly.</div></div></li></ol>
</div><div class="p"><a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>Implementation-defined<span class="arrow">&#183;</span></a> <a href="#dt-pre-lexical" class="termref" shape="rect"><span class="arrow">&#183;</span>pre-lexical<span class="arrow">&#183;</span></a> facets <span class="rfc2119">must not</span>, when
applied to <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> which have been whitespace-normalized
by the <a href="#f-w" class="compref" shape="rect">whiteSpace</a> facet, produce <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> which are
no longer whitespace-normalized.
</div></li></ol><div class="note"><div class="p"><b>Note:</b> It follows from the above that each <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>
datatype and each <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> constraining facet has an <a href="http://www.w3.org/TR/2004/REC-xml-names11-20040204/#dt-expname" shape="rect">expanded name</a>.
These <a href="http://www.w3.org/TR/2004/REC-xml-names11-20040204/#dt-expname" shape="rect">expanded names</a> are used by the condition-inclusion mechanism
of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a> to allow schema authors to test whether a
particular datatype or facet is supported and adjust the schema document's
contents accordingly.
</div></div></div><div class="div2">
<h3><span class="nav"><a href="#impl-def" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="impl-dep" id="impl-dep" shape="rect"></a>H.2 Implementation-dependent features</h3><p>The following features in this specification are <a href="#key-impl-dep" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-dependent<span class="arrow">&#183;</span></a>.
Software which claims to conform to this specification (or to the
specification of any host language which embeds
<em>XSD 1.1: Datatypes</em>) <span class="rfc2119">may</span> describe how these choices
have been exercised, in documentation which accompanies any conformance claim.
</p><ol class="enumar"><li><div class="p">When multiple errors are encountered in type definitions or elsewhere,
it is <a href="#key-impl-dep" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-dependent<span class="arrow">&#183;</span></a> how many of the errors are reported (as long
as at least one error is reported), and which,
what form the report of errors takes, and how much detail is included.</div></li></ol></div></div><div class="div1">
<h2><a name="changes" id="changes" shape="rect"></a>I Changes since version 1.0</h2><div class="div2">
<h3><span class="nav"> <a href="#sec-chnum" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="sec-chdtfacets" id="sec-chdtfacets" shape="rect"></a>I.1 Datatypes and Facets</h3><p>In order to align this specification with
those being prepared by the XSL and XML Query Working Groups, a new
datatype named <a href="#anyAtomicType" shape="rect">anyAtomicType</a> has been introduced; it
serves as the base type definition for all <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>
<a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatypes.</p><p>The treatment of datatypes has been made more
precise and explicit; most of these changes affect the section on
<a href="#typesystem" shape="rect">Datatype System (&#167;2)</a>. Definitions have been revised thoroughly and
technical terms are used more consistently.</p><p>The (numeric) equality of values is now distinguished from
the identity of the values themselves; this allows <a href="#float" shape="rect">float</a> and <a href="#double" shape="rect">double</a> to treat positive and negative
zero as distinct values, but nevertheless
to treat them as equal for purposes of bounds checking. This allows a
better alignment with the expectations of users working with IEEE
floating-point binary numbers.</p><p>The <a href="#ff-b-value" class="propref" shape="rect">{value}</a> of the <a href="#ff-b" class="compref" shape="rect">bounded</a> component for <b><i>list</i></b> datatypes is now always
<b><i>false</i></b>, reflecting the fact that no ordering is prescribed for <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a>
datatypes, and so
they cannot be bounded using the facets defined by this
specification.</p><p>Units of length have been specified for all datatypes that are permitted
the length constraining facet.</p><p>The use of the namespace
<code>http://www.w3.org/2001/XMLSchema-datatypes</code> has been
deprecated. The definition of a namespace separate from the main
namespace defined by this specification proved not to be necessary or
helpful in facilitating the use, by other specifications, of the
datatypes defined here, and its use raises a number of difficult
unsolved practical questions.
</p><p>
An <a href="#f-a" class="compref" shape="rect">assertions</a> facet has been added, to allow schema
authors to associated assertions with simple type definitions,
analogous to those allowed by <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a> for complex type definitions.
</p><p>The discussion of whitespace handling in
<a href="#rf-whiteSpace" shape="rect">whiteSpace (&#167;4.3.6)</a> makes clearer that when
the value is <b>collapse</b>, <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> consisting
solely of whitespace characters are reduced to the
empty string; the earlier formulation has been misunderstood
by some implementors.</p><p>
Conforming implementations <span class="rfc2119">may</span> now support <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes
and facets in addition to those defined here.
</p></div><div class="div2">
<h3><span class="nav"><a href="#sec-chdtfacets" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#sec-chdt" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="sec-chnum" id="sec-chnum" shape="rect"></a>I.2 Numerical Datatypes</h3><p>As noted above, positive and negative zero,
<a href="#float" shape="rect">float</a> and <a href="#double" shape="rect">double</a> are now treated as
distinct but arithmetically equal values.</p><p>The description of the lexical spaces of
<a href="#unsignedLong" shape="rect">unsignedLong</a>,
<a href="#unsignedInt" shape="rect">unsignedInt</a>,
<a href="#unsignedShort" shape="rect">unsignedShort</a>, and
<a href="#unsignedByte" shape="rect">unsignedByte</a> has been revised to agree with the
schema for schemas by allowing for the possibility of a
leading sign.</p><p>The <a href="#float" shape="rect">float</a> and
<a href="#double" shape="rect">double</a> datatypes now follow IEEE 754 implementation
practice more closely; in particular, negative and positive zero are
now distinct values, although arithmetically equal. Conversely, NaN is identical but not arithmetically equal
to itself.</p><p>
The character sequence '<code>+INF</code>' has been added to the
lexical spaces of <a href="#float" shape="rect">float</a> and <a href="#double" shape="rect">double</a>.
</p></div><div class="div2">
<h3><span class="nav"><a href="#sec-chnum" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> <a href="#sec-chother" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="sec-chdt" id="sec-chdt" shape="rect"></a>I.3 Date/time Datatypes</h3><p>The treatment of <a href="#dateTime" shape="rect">dateTime</a> and related
datatypes has been changed to provide a more explicit account of
the value space in terms of seven numeric properties. The most
important substantive change is that values now explicitly retain
information about the time zone offset indicated in the lexical form; this
allows better alignment with the treatment of such values in
<a href="#F_O" shape="rect">[XQuery 1.0 and XPath 2.0 Functions and Operators]</a>.</p><p>At the suggestion of the
<a href="http://www.w3.org/2007/OWL/wiki/OWL_Working_Group" shape="rect">W3C OWL Working Group</a>, a <a href="#f-tz" class="compref" shape="rect">explicitTimezone</a> facet
has been added to allow date/time datatypes to be restricted by
requiring or forbidding an explicit time zone offset from UTC,
instead of making it optional. The <a href="#dateTimeStamp" shape="rect">dateTimeStamp</a>
datatype has been defined using this facet.</p><p>The
treatment of the date/time datatype includes a carefully revised
definition of order that ensures that for repeating datatypes (<a href="#time" shape="rect">time</a>, <a href="#gDay" shape="rect">gDay</a>, etc.), timezoned values will be
compared as though they are on the same "calendar
day" ("local" property values) so that in
any given timezone, the days start at the local midnight and end just
before local midnight.&#160; Days do not run from 00:00:00Z to
24:00:00Z in timezones other than Z.
</p><p>The lexical representation
'<code>0000</code>' for years is recognized and maps to the year 1
BCE; '<code>-0001</code>' maps to 2 BCE, etc. This is a change from
version 1.0 of this specification, in order to align with established
practice (the so-called "astronomical year
numbering") and <a href="#ISO8601" shape="rect">[ISO 8601]</a>.</p><p>
Algorithms for arithmetic involving <a href="#dateTime" shape="rect">dateTime</a> and
<a href="#duration" shape="rect">duration</a> values have been provided, and corrections
made to the <a href="#vp-dt-timeOnTimeline" shape="rect"><i><span class="arrow">&#183;</span>timeOnTimeline<span class="arrow">&#183;</span></i></a> function.
</p><p>The treatment of leap seconds is no longer <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a>:
the date/time types described here do not include leap-second values.
</p><p>
At the suggestion of the
<a href="http://www.w3.org/International/core/" shape="rect">W3C
Internationalization Core Working Group</a>, most references to
"time zone" have been replaced with references to
"time zone offset"; this
resolves issue
<a href="http://www.w3.org/Bugs/Public/show_bug.cgi?id=4642" shape="rect">4642
Terminology: zone offset versus time zone</a>.
</p><p>
A number of syntactic and semantic errors in some of the regular
expressions given to describe the lexical spaces of the <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>
datatypes (most notably the date/time datatypes) have been corrected.
</p></div><div class="div2">
<h3><span class="nav"><a href="#sec-chdt" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="sec-chother" id="sec-chother" shape="rect"></a>I.4 Other changes</h3><p>Support has been added for <a href="#XML" shape="rect">[XML]</a>
version 1.1 and <a href="#XMLNS" shape="rect">[Namespaces in XML]</a> version 1.1. The
datatypes which depend on <a href="#XML" shape="rect">[XML]</a> and <a href="#XMLNS" shape="rect">[Namespaces in XML]</a>
may now be used with the definitions provided by the 1.1 versions
of those specifications, as well as with the definitions in the
1.0 versions. It is <a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> whether software conforming
to this specification supports the definitions given in version 1.0,
or in version 1.1, of <a href="#XML" shape="rect">[XML]</a> and <a href="#XMLNS" shape="rect">[Namespaces in XML]</a>.</p><p>To reduce confusion and avert a widespread misunderstanding,
the normative references to various W3C specifications now state
explicitly that while the reference describes the particular edition
of a specification current at the time this specification is
published, conforming implementations of this specification
are not required to ignore later editions of the other
specification but instead <span class="rfc2119">may</span> support later editions, thus
allowing users of this specification to benefit from corrections to other
specifications on which this one depends.
</p><p>
The reference
to the Unicode Database <a href="#UnicodeDB" shape="rect">[Unicode Database]</a>
has been updated from version 4.1.0 to version 5.1.0,
at the suggestion of the
<a href="http://www.w3.org/International/core/" shape="rect">W3C
Internationalization Core Working Group</a>
</p><p>
References to various other specifications have also been updated.
</p><p>The account of the value space of <a href="#duration" shape="rect">duration</a> has been changed to specify that values consist only
of two numbers (the number of months and the number of seconds) rather
than six (years, months, days, hours, minutes, seconds). This allows
clearly equivalent durations like P2Y and P24M to have the same
value.</p><p>Two new totally ordered restrictions of <a href="#duration" shape="rect">duration</a>
have been defined: <a href="#yearMonthDuration" shape="rect">yearMonthDuration</a>, defined in
<a href="#yearMonthDuration" shape="rect">yearMonthDuration (&#167;3.4.26)</a>, and <a href="#dayTimeDuration" shape="rect">dayTimeDuration</a>, defined in <a href="#dayTimeDuration" shape="rect">dayTimeDuration (&#167;3.4.27)</a>.
This allows better alignment with the treatment of durations in
<a href="#F_O" shape="rect">[XQuery 1.0 and XPath 2.0 Functions and Operators]</a>.</p><p>The XML representations of the <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> and
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> built-in datatypes have been moved out of the schema document
for schema documents in <a href="#schema" shape="rect">Schema for Schema Documents (Datatypes)
(normative) (&#167;A)</a> and into a
different appendix (<a href="#prim.nxsd" shape="rect">Illustrative XML representations for the built-in simple type definitions (&#167;C)</a>).</p><p>Numerous minor corrections have been made in response to comments
on earlier working drafts.</p><p>The treatment of topics handled both in this specification and in
<a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a> has been revised to align
the two specifications more closely.</p><p>Several references to other specifications have been updated to
refer to current versions of those specifications, including
<a href="#XML" shape="rect">[XML]</a>, <a href="#XMLNS" shape="rect">[Namespaces in XML]</a>,
<a href="#RFC3986" shape="rect">[RFC 3986]</a>,
<a href="#RFC3987" shape="rect">[RFC 3987]</a>, and
<a href="#RFC3548" shape="rect">[RFC 3548]</a>.
</p><p>Requirements for the datatype-validity of values of type <a href="#language" shape="rect">language</a> have been clarified.</p><p>Explicit definitions have been provided for the lexical and
<a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mappings<span class="arrow">&#183;</span></a> of most of the primitive datatypes.
</p><p>Schema Component Constraint
<a href="#enumeration-required-notation" shape="rect">enumeration facet value required for NOTATION (&#167;3.3.19)</a>,
which restricts the use of <a href="#NOTATION" shape="rect">NOTATION</a>
to validate <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> without first enumerating a
set of values, has been clarified.
</p><p>Some errors in the definition of regular-expression metacharacters
have been corrected.</p><p>The descriptions of the <a href="#f-p" class="compref" shape="rect">pattern</a>
and <a href="#f-e" class="compref" shape="rect">enumeration</a> facets have been revised to make clearer how
values from different derivation steps are combined.</p><p>A warning against using the whitespace facet for tokenizing
natural-language data has been added on the request of the W3C
Internationalization Working Group.</p><p>In order to correct an error in
version 1 of this specification and of <a href="#structural-schemas" shape="rect">[XSD 1.1 Part 1: Structures]</a>,
<a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>unions<span class="arrow">&#183;</span></a> are no longer forbidden to be members of other <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>unions<span class="arrow">&#183;</span></a>.
Descriptions of <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> types have also
been changed to reflect the fact that <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>unions<span class="arrow">&#183;</span></a> can be derived by
restricting other <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>unions<span class="arrow">&#183;</span></a>. The concepts of <a href="#dt-transitivemembership" class="termref" shape="rect"><span class="arrow">&#183;</span>transitive membership<span class="arrow">&#183;</span></a>
(the members of all members, recursively) and
<a href="#dt-basicmember" class="termref" shape="rect"><span class="arrow">&#183;</span>basic member<span class="arrow">&#183;</span></a> (those datatypes in the transitive
membership which are not <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>unions<span class="arrow">&#183;</span></a>) have been introduced and are used.
</p><p>
The requirements of conformance have been clarified in various
ways.
A distinction is now made between
<a href="#key-impl-def" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-defined<span class="arrow">&#183;</span></a> and <a href="#key-impl-dep" class="termref" shape="rect"><span class="arrow">&#183;</span>implementation-dependent<span class="arrow">&#183;</span></a> features, and a list of
such features is provided in <a href="#idef-idep" shape="rect">Implementation-defined and implementation-dependent features (normative) (&#167;H)</a>.
Requirements imposed on host languages which
use or incorporate the datatypes defined by this specification are
defined.</p><p>The definitions of <span class="rfc2119">must</span>, <span class="rfc2119">must not</span>, and
<a href="#dt-error" class="termref" shape="rect"><span class="arrow">&#183;</span>error<span class="arrow">&#183;</span></a> have been changed to specify that processors <span class="rfc2119">must</span> detect and
report errors in schemas and schema documents (although the quality
and level of detail in the error report is not constrained).</p><p>
The lexical mapping of the <a href="#QName" shape="rect">QName</a> datatype,
in particular its dependence on the namespace bindings in
scope at the place where the <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> appears,
has been clarified.
</p><p>
The characterization of <a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> has been revised to say
more clearly when they are functions and when they are not, and when
(in the <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a> datatypes) there are values in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> not
mapped to by any members of the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>.
</p><p>The nature of equality and identity of lists
has been clarified.</p><p>
Enumerations, identity constraints, and value constraints now
treat both identical values
and equal values as being the same for purposes of validation.
This affects primitive datatypes in which identity and equality
are not the same. Positive and negative zero, for example,
are not treated as different for purposes of keys, keyrefs,
or uniqueness constraints, and an enumeration which includes
either zero will accept either zero.
</p><p>
The mutual relations of lists and unions have been clarified, in
particular the restrictions on what kinds of datatypes <span class="rfc2119">may</span> appear as
the <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> of a list or among the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of a union.
</p><p>
Unions with no member types (and thus with empty
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>) are now explicitly allowed.
</p><p>
Cycles in the definitions of <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>unions<span class="arrow">&#183;</span></a> and in the
derivation of simple types are now explicitly forbidden.
</p><p>
A number of minor errors and obscurities have been fixed.
</p></div></div><div class="div1">
<h2><a name="normative-glossary" id="normative-glossary" shape="rect"></a>J Glossary (non-normative)</h2><p>The listing below is for the benefit of readers of a printed version of this
document: it collects together all the definitions which appear in the
document above.</p><dl><dt><a href="#dt-cos" shape="rect">Constraint on Schemas</a></dt>
<dd>
<b>Constraint on Schemas</b>
</dd>
<dt><a href="#dt-src" shape="rect">Schema Representation Constraint</a></dt>
<dd>
<b>Schema Representation Constraint</b>
</dd>
<dt><a href="#dt-utc" shape="rect">UTC</a></dt>
<dd><b>Universal
Coordinated Time</b> (<b>UTC</b>)
is an adaptation of TAI which closely approximates UT1 by adding
<a href="#dt-leapsec" class="termref" shape="rect"><span class="arrow">&#183;</span>leap-seconds<span class="arrow">&#183;</span></a> to selected
<a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a> days.</dd>
<dt><a href="#dt-cvc" shape="rect">Validation Rule</a></dt>
<dd>
<b>Validation Rule</b>
</dd>
<dt><a href="#dt-xdmrep" shape="rect">XDM representation</a></dt>
<dd>For
any value <var>V</var>
and any datatype
<var>T</var>, the <b>XDM representation of <var>V</var> under
<var>T</var></b> is
defined recursively as follows. Call the XDM representation
<var>X</var>. Then<div class="constraintlist"><div class="clnumber">1 <span class="p">If <var>T</var> = <a href="#dt-anySimpleType" class="termref" shape="rect"><span class="arrow">&#183;</span><code>xs:anySimpleType</code><span class="arrow">&#183;</span></a> or <a href="#dt-anyAtomicType" class="termref" shape="rect"><span class="arrow">&#183;</span><code>xs:anyAtomicType</code><span class="arrow">&#183;</span></a> then <var>X</var> is <var>V</var>,
and the <a href="http://www.w3.org/TR/xpath20/#dt-dynamic-type" shape="rect">dynamic
type</a> of <var>X</var> is <code>xs:untypedAtomic</code>.
</span></div>
<div class="clnumber">2 <span class="p">If <var>T</var> . <a href="#std-variety" class="propref" shape="rect">{variety}</a> = <b><i>atomic</i></b>,
then
let <var>T2</var> be the <a href="#dt-optype" class="termref" shape="rect"><span class="arrow">&#183;</span>nearest built-in datatype<span class="arrow">&#183;</span></a> to <var>T</var>.
If <var>V</var> is a member of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <var>T2</var>, then
<var>X</var> is <var>V</var> and the
<a href="http://www.w3.org/TR/xpath20/#dt-dynamic-type" shape="rect">dynamic type</a>
of <var>X</var> is <var>T2</var>.
Otherwise (i.e. if <var>V</var> is not a member of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of <var>T2</var>),
<var>X</var> is the <a href="#dt-xdmrep" class="termref" shape="rect"><span class="arrow">&#183;</span>XDM representation<span class="arrow">&#183;</span></a> of <var>V</var>
under <var>T2</var> . <a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.
</span></div>
<div class="clnumber">3 <span class="p">If <var>T</var> . <a href="#std-variety" class="propref" shape="rect">{variety}</a> = <b><i>list</i></b>,
then <var>X</var> is a sequence of atomic values, each atomic value
being the <a href="#dt-xdmrep" class="termref" shape="rect"><span class="arrow">&#183;</span>XDM representation<span class="arrow">&#183;</span></a> of the corresponding
item in the list <var>V</var> under <var>T</var> . <a href="#std-item_type_definition" class="propref" shape="rect">{item type definition}</a>.
</span></div>
<div class="clnumber">4 <span class="p">If <var>T</var> . <a href="#std-variety" class="propref" shape="rect">{variety}</a> = <b><i>union</i></b>,
then <var>X</var> is the <a href="#dt-xdmrep" class="termref" shape="rect"><span class="arrow">&#183;</span>XDM representation<span class="arrow">&#183;</span></a> of <var>V</var>
under the <a href="#dt-active-basic-member" class="termref" shape="rect"><span class="arrow">&#183;</span>active basic member<span class="arrow">&#183;</span></a> of <var>V</var>
when validated against <var>T</var>.
If there is no <a href="#dt-active-basic-member" class="termref" shape="rect"><span class="arrow">&#183;</span>active basic member<span class="arrow">&#183;</span></a>,
then <var>V</var> has no <a href="#dt-xdmrep" class="termref" shape="rect"><span class="arrow">&#183;</span>XDM representation<span class="arrow">&#183;</span></a> under <var>T</var>.</span></div>
</div>
</dd>
<dt><a href="#key-null" shape="rect">absent</a></dt>
<dd>Throughout this
specification, the value <b><b><i>absent</i></b></b> is used
as a distinguished value to indicate that a given instance of a property
"has no value" or "is absent".</dd>
<dt><a href="#dt-active-basic-member" shape="rect">active basic member</a></dt>
<dd>If the <a href="#dt-active-member" class="termref" shape="rect"><span class="arrow">&#183;</span>active member type<span class="arrow">&#183;</span></a> is
itself a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, one of <em>its</em> members will be
<em>its</em> <a href="#dt-active-member" class="termref" shape="rect"><span class="arrow">&#183;</span>active member type<span class="arrow">&#183;</span></a>, and so on, until
finally a <a href="#dt-basicmember" class="termref" shape="rect"><span class="arrow">&#183;</span>basic (non-union)
member<span class="arrow">&#183;</span></a> is reached. That <a href="#dt-basicmember" class="termref" shape="rect"><span class="arrow">&#183;</span>basic member<span class="arrow">&#183;</span></a> is
the <b>active basic member</b> of the union.</dd>
<dt><a href="#dt-active-member" shape="rect">active member type</a></dt>
<dd>In a valid
instance of any <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, the first of its members in order which
accepts the instance as valid is the <b>active member
type</b>.</dd>
<dt><a href="#std-ancestor" shape="rect">ancestor</a></dt>
<dd>The
<b>ancestors</b> of a
<a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html#td" shape="rect">type definition</a> are its
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a> and the
<a href="#std-ancestor" class="termref" shape="rect"><span class="arrow">&#183;</span>ancestors<span class="arrow">&#183;</span></a> of its
<a href="#std-base_type_definition" class="propref" shape="rect">{base type definition}</a>.</dd>
<dt><a href="#dt-anyAtomicType" shape="rect">anyAtomicType</a></dt>
<dd>
<b>anyAtomicType</b>
is a special <a href="#dt-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restriction<span class="arrow">&#183;</span></a> of <a href="#anySimpleType" shape="rect">anySimpleType</a>.
The <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value<span class="arrow">&#183;</span></a>
and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>
of <b>anyAtomicType</b> are the unions of the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value<span class="arrow">&#183;</span></a>
and <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>
of all the <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes, and
<b>anyAtomicType</b> is their <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.
</dd>
<dt><a href="#dt-anySimpleType" shape="rect">anySimpleType</a></dt>
<dd>
The definition of <b>anySimpleType</b> is a special
<a href="#dt-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restriction<span class="arrow">&#183;</span></a> of <b><i>anyType</i></b>.&#160;
The
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of <b>anySimpleType</b>
is the set of all sequences of Unicode
characters,
and its <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> includes all <a href="#dt-atomic-value" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic values<span class="arrow">&#183;</span></a>
and all finite-length lists of
zero or more
<a href="#dt-atomic-value" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic values<span class="arrow">&#183;</span></a>.</dd>
<dt><a href="#dt-atomic" shape="rect">atomic</a></dt>
<dd><b>Atomic</b> datatypes
are those whose
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a> contain only <a href="#dt-atomic-value" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic values<span class="arrow">&#183;</span></a>.&#160;
<b>Atomic</b> datatypes are <a href="#anyAtomicType" shape="rect">anyAtomicType</a> and all
datatypes
<a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derived<span class="arrow">&#183;</span></a> from it.</dd>
<dt><a href="#dt-atomic-value" shape="rect">atomic value</a></dt>
<dd>An
<b>atomic value</b> is an elementary value, not
constructed from simpler values by any user-accessible
means defined by this specification.</dd>
<dt><a href="#dt-basetype" shape="rect">base type</a></dt>
<dd>Every datatype
other than <a href="#anySimpleType" shape="rect">anySimpleType</a>
is associated with another datatype, its <b>base type</b>.
<b>Base types</b> can be <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a>,
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>, or
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a>.
</dd>
<dt><a href="#dt-basicmember" shape="rect">basic member</a></dt>
<dd>Those members of the <a href="#dt-transitivemembership" class="termref" shape="rect"><span class="arrow">&#183;</span>transitive membership<span class="arrow">&#183;</span></a>
of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatype <var>U</var> which are themselves not <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
datatypes
are the <b>basic members</b> of <var>U</var>.</dd>
<dt><a href="#dt-built-in" shape="rect">built-in</a></dt>
<dd><b>Built-in</b>
datatypes are those which are defined in this
specification; they can
be
<a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a>,
<a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>, or
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatypes
.
</dd>
<dt><a href="#dt-canonical-mapping" shape="rect">canonical mapping</a></dt>
<dd>The
<b>canonical mapping</b> is a prescribed subset of the inverse of a
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> which is
one-to-one and whose domain (where possible) is the entire range of the
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a> (the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>).</dd>
<dt><a href="#dt-canonical-representation" shape="rect">canonical representation</a></dt>
<dd>The <b>canonical
representation</b> of a value in the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of a datatype is
the <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> associated with that value by the
datatype's <a href="#dt-canonical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>canonical mapping<span class="arrow">&#183;</span></a></dd>
<dt><a href="#dt-ccsub" shape="rect">character class subtraction</a></dt>
<dd>A
<a href="#dt-chargroup" class="termref" shape="rect"><span class="arrow">&#183;</span>character group<span class="arrow">&#183;</span></a> that contains a subtraction operator
is referred to as a <b>character class subtraction</b>.</dd>
<dt><a href="#dt-cgpart" shape="rect">character group part</a></dt>
<dd>A
<b>character group part</b> (<a href="#nt-charGroupPart" shape="rect"><i>charGroupPart</i></a>) is
any
of:
a single unescaped character
(<a href="#nt-SingleCharNoEsc" shape="rect"><i>SingleCharNoEsc</i></a>),
a single escaped character
(<a href="#nt-SingleCharEsc" shape="rect"><i>SingleCharEsc</i></a>),
a character class escape
(<a href="#nt-charClassEsc" shape="rect"><i>charClassEsc</i></a>),
or a character range
(<a href="#nt-charRange" shape="rect"><i>charRange</i></a>).</dd>
<dt><a href="#dt-constraining-facet" shape="rect">constraining facet</a></dt>
<dd><b>Constraining facets</b>
are schema components whose values may be set or changed
during <a href="#dt-derived" class="termref" shape="rect"><span class="arrow">&#183;</span>derivation<span class="arrow">&#183;</span></a> (subject to facet-specific controls)
to control various aspects of the derived datatype.</dd>
<dt><a href="#dt-constructed" shape="rect">constructed</a></dt>
<dd>All
<a href="#dt-ordinary" class="termref" shape="rect"><span class="arrow">&#183;</span>ordinary<span class="arrow">&#183;</span></a> datatypes are defined in terms of, or
<b>constructed</b> from, other datatypes, either by
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>restricting<span class="arrow">&#183;</span></a> the
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> or <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>
of a <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> using zero or more
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a>
or by specifying the new datatype as a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> of items of some
<a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a>,
or by defining it as a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> of some specified
sequence of <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a>.</dd>
<dt><a href="#dt-datatype" shape="rect">datatype</a></dt>
<dd>In
this specification, a <b>datatype</b> has
three properties:
<ul><li><div class="p">A <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, which is a set of
values. </div></li><li><div class="p">A <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>, which is a set of
<a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literals<span class="arrow">&#183;</span></a> used to denote the values.</div></li><li><div class="p">A small collection of <em>functions, relations, and
procedures</em> associated with the datatype.&#160; Included are
equality and (for some datatypes)
order relations on the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, and a
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mapping<span class="arrow">&#183;</span></a>, which is a mapping from the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a>
into
the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.</div></li></ul>
</dd>
<dt><a href="#dt-immediately-derived" shape="rect">derived</a></dt>
<dd>A datatype
<var>T</var> is <b>immediately derived</b> from another datatype
<var>X</var> if and only if <var>X</var> is the
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a> of <var>T</var>.</dd>
<dt><a href="#dt-derived" shape="rect">derived</a></dt>
<dd>A datatype <var>R</var>
is <b>derived</b> from another
datatype <var>B</var> if and only if one of the following is true:
<ul><li><div class="p"><var>B</var> is the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>
of <var>R</var>.
</div></li><li><div class="p">There is some datatype <var>X</var>
such that <var>X</var> is the <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>
of <var>R</var>, and <var>X</var> is derived from
<var>B</var>.</div></li></ul>
</dd>
<dt><a href="#dt-div" shape="rect">div</a></dt>
<dd>If <var>m</var> and <var>n</var> are numbers, then
<var>m</var>&#160;<b>div</b> <var>n</var> is the greatest integer
less than or equal to
<var>m</var>&#160;/&#160;<var>n</var>&#160;.</dd>
<dt><a href="#dt-error" shape="rect">error</a></dt>
<dd><b>error</b></dd>
<dt><a href="#dt-fb-restriction" shape="rect">facet-based restriction</a></dt>
<dd>A
datatype is defined by <b>facet-based restriction</b> of another datatype
(its <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>),
when values for zero or more <a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facets<span class="arrow">&#183;</span></a> are specified
that serve to constrain its <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> and/or its
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> to a subset of those of the
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.</dd>
<dt><a href="#dt-compatibility" shape="rect">for compatibility</a></dt>
<dd>for compatibility</dd>
<dt><a href="#dt-fundamental-facet" shape="rect">fundamental facet</a></dt>
<dd>
Each <b>fundamental facet</b> is a
schema component that provides a limited piece of information about
some aspect of each datatype.</dd>
<dt><a href="#key-impl-def" shape="rect">implementation-defined</a></dt>
<dd>Something
which <span class="rfc2119">may</span> vary among conforming implementations, but which <span class="rfc2119">must</span>
be specified by the implementor for each particular implementation,
is <b>implementation-defined</b>.</dd>
<dt><a href="#key-impl-dep" shape="rect">implementation-dependent</a></dt>
<dd>Something
which <span class="rfc2119">may</span> vary among conforming implementations, is not specified by
this or any W3C specification, and is not required to be specified
by the implementor for any particular implementation,
is <b>implementation-dependent</b>.</dd>
<dt><a href="#dt-incomparable" shape="rect">incomparable</a></dt>
<dd>Two
values that are neither equal, less-than, nor greater-than are
<b>incomparable</b>. Two values
that are not <a href="#dt-incomparable" class="termref" shape="rect"><span class="arrow">&#183;</span>incomparable<span class="arrow">&#183;</span></a> are
<b>comparable</b>.</dd>
<dt><a href="#dt-interveningunion" shape="rect">intervening union</a></dt>
<dd>If a datatype <var>M</var> is in the
<a href="#dt-transitivemembership" class="termref" shape="rect"><span class="arrow">&#183;</span>transitive membership<span class="arrow">&#183;</span></a> of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
datatype <var>U</var>, but not one of <var>U</var>'s <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a>,
then a sequence of one or more <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatypes necessarily exists,
such that the first is one of the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of <var>U</var>, each
is one of the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of its predecessor in the sequence, and
<var>M</var> is one of the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of the last in the sequence.
The <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatypes in this sequence are said to
<b>intervene</b> between <var>M</var> and <var>U</var>. When
<var>U</var> and <var>M</var> are given by the context, the datatypes
in the sequence are referred to as the <b>intervening unions</b>.
When <var>M</var> is one of the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of <var>U</var>,
the set of <b>intervening unions</b> is the empty set.
</dd>
<dt><a href="#dt-itemType" shape="rect">item type</a></dt>
<dd>
The <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> or <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>
datatype that participates in the definition of a <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype
is the
<b>item type</b>
of that <a href="#dt-list" class="termref" shape="rect"><span class="arrow">&#183;</span>list<span class="arrow">&#183;</span></a> datatype.</dd>
<dt><a href="#dt-leapsec" shape="rect">leap-second</a></dt>
<dd>A
<b>leap-second</b> is an additional second added
to the last day of December, June, October, or March,
when such an adjustment is deemed necessary by the
International Earth Rotation and Reference Systems Service
in order to keep <a href="#dt-utc" class="termref" shape="rect"><span class="arrow">&#183;</span>UTC<span class="arrow">&#183;</span></a> within 0.9 seconds
of observed astronomical time.&#160; When leap seconds are
introduced, the last minute in the day has more than
sixty seconds.&#160;
In theory leap seconds can also be removed from a
day, but this has not yet occurred.
(See
<a href="#IERS" shape="rect">[International Earth Rotation Service (IERS)]</a>,
<a href="#itu-r-460-6" shape="rect">[ITU-R TF.460-6]</a>.)
Leap seconds are
<em>not</em> supported by the types defined
here.</dd>
<dt><a href="#dt-lexical" shape="rect">lexical</a></dt>
<dd>A constraining facet which
directly restricts the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of a datatype
is a <b>lexical</b> facet.</dd>
<dt><a href="#dt-lexical-mapping" shape="rect">lexical mapping</a></dt>
<dd>The
<b>lexical mapping</b> for a datatype is a prescribed
relation
which maps from the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of the datatype
into its <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>.</dd>
<dt><a href="#dt-lexical-representation" shape="rect">lexical representation</a></dt>
<dd>The members of the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> are
<b>lexical representations</b> of the values to which they are
mapped.</dd>
<dt><a href="#dt-lexical-space" shape="rect">lexical space</a></dt>
<dd>The
<b>lexical space</b> of a datatype is
the prescribed set of strings
which
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>the lexical
mapping<span class="arrow">&#183;</span></a> for that datatype
maps to values of that datatype.</dd>
<dt><a href="#dt-list" shape="rect">list</a></dt>
<dd><b>List</b> datatypes are
those having values each of which consists of a finite-length
(possibly empty) sequence of <a href="#dt-atomic-value" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic values<span class="arrow">&#183;</span></a>. The values in a list are
drawn from some
<a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatype (or from
a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> of <a href="#dt-atomic" class="termref" shape="rect"><span class="arrow">&#183;</span>atomic<span class="arrow">&#183;</span></a> datatypes), which is
the <a href="#dt-itemType" class="termref" shape="rect"><span class="arrow">&#183;</span>item type<span class="arrow">&#183;</span></a> of the <b>list</b>. </dd>
<dt><a href="#dt-literal" shape="rect">literal</a></dt>
<dd>A sequence of zero or more
characters in the Universal Character Set (UCS) which may or may not
prove upon inspection to be a member of the <a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> of a given
datatype and thus a <a href="#dt-lexical-representation" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical representation<span class="arrow">&#183;</span></a> of a given value in that datatype's
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, is referred to as a <b>literal</b>.</dd>
<dt><a href="#dt-match" shape="rect">match</a></dt>
<dd><b>match</b></dd>
<dt><a href="#dt-may" shape="rect">may</a></dt>
<dd><span class="rfc2119">may</span></dd>
<dt><a href="#dt-memberTypes" shape="rect">member types</a></dt>
<dd>
The datatypes that participate in the
definition of a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatype are known as the
<b>member types</b>
of that <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> datatype.</dd>
<dt><a href="#dt-minimally-conforming" shape="rect">minimally conforming</a></dt>
<dd>Implementations claiming <b>minimal conformance</b> to this specification
independent of any host language <span class="rfc2119">must</span> do
<b>all</b> of the following:<div class="constraintlist"><div class="clnumber">1<a id="gl-support-all-primitives" name="gl-support-all-primitives" shape="rect"> </a><span class="p">Support all the <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatypes defined in this specification.</span></div>
<div class="clnumber">2<a id="gl-implement-all-cos" name="gl-implement-all-cos" shape="rect"> </a><span class="p">Completely and correctly implement all of
the <a href="#dt-cos" class="termref" shape="rect"><span class="arrow">&#183;</span>constraints on schemas<span class="arrow">&#183;</span></a>
defined in this specification.</span></div>
<div class="clnumber">3<a id="gl-implement-all-vr" name="gl-implement-all-vr" shape="rect"> </a><span class="p">Completely and correctly implement all of
the <a href="#dt-cvc" class="termref" shape="rect"><span class="arrow">&#183;</span>Validation Rules<span class="arrow">&#183;</span></a>
defined in this specification, when checking the
datatype validity of literals against datatypes.</span></div>
</div>
</dd>
<dt><a href="#dt-mod" shape="rect">mod</a></dt>
<dd>If <var>m</var> and <var>n</var> are numbers, then
<var>m</var> <b>mod</b> <var>n</var> is&#160;
<var>m</var>&#160;&#8722;&#160;<var>n</var>&#160;&#215;&#160;(&#160;<var>m</var>&#160;<a href="#dt-div" class="termref" shape="rect"><span class="arrow">&#183;</span>div<span class="arrow">&#183;</span></a>&#160;<var>n</var>)&#160;.</dd>
<dt><a href="#dt-must" shape="rect">must</a></dt>
<dd><span class="rfc2119">must</span></dd>
<dt><a href="#dt-mustnot" shape="rect">must not</a></dt>
<dd><span class="rfc2119">must not</span></dd>
<dt><a href="#dt-optype" shape="rect">nearest built-in datatype</a></dt>
<dd>For
any datatype <var>T</var>, the <b>nearest built-in datatype</b> to
<var>T</var> is the first <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatype encountered in following
the chain of links connecting each datatype to its
<a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>. If <var>T</var> is a <a href="#dt-built-in" class="termref" shape="rect"><span class="arrow">&#183;</span>built-in<span class="arrow">&#183;</span></a> datatype, then the
nearest built-in datatype of <var>T</var> is <var>T</var> itself; otherwise,
it is the nearest built-in datatype of <var>T</var>'s <a href="#dt-basetype" class="termref" shape="rect"><span class="arrow">&#183;</span>base type<span class="arrow">&#183;</span></a>.</dd>
<dt><a href="#dt-normalized-block-name" shape="rect">normalized block name</a></dt>
<dd>
For any Unicode block, the <b>normalized block name</b> of that
block is the string of characters formed by stripping out white space
and underbar characters from the block name as given in <a href="#UnicodeDB" shape="rect">[Unicode Database]</a>, while retaining hyphens and preserving case
distinctions.</dd>
<dt><a href="#dt-optional" shape="rect">optional</a></dt>
<dd>An <b>optional</b>
property is <em>permitted</em> but not <em>required</em> to have
the distinguished
value <b><i>absent</i></b>.</dd>
<dt><a href="#dt-ordered" shape="rect">ordered</a></dt>
<dd>A
<a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a>, and hence a datatype, is said to be
<b>ordered</b> if some
members of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> are
drawn from a <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a>
datatype for which
the table in <a href="#app-fundamental-facets" shape="rect">Fundamental Facets (&#167;F.1)</a> specifies
the value <b><i>total</i></b> or <b><i>partial</i></b> for
the <em>ordered</em> facet.</dd>
<dt><a href="#dt-ordinary" shape="rect">ordinary</a></dt>
<dd><b>Ordinary</b>
datatypes are all datatypes other than the <a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a>
and <a href="#dt-primitive" class="termref" shape="rect"><span class="arrow">&#183;</span>primitive<span class="arrow">&#183;</span></a> datatypes.</dd>
<dt><a href="#dt-owner" shape="rect">owner</a></dt>
<dd>A
component may be referred to as the <b>owner</b> of its properties, and of the values of
those properties.</dd>
<dt><a href="#dt-pre-lexical" shape="rect">pre-lexical</a></dt>
<dd>A constraining facet which
is used to normalize an initial <a href="#dt-literal" class="termref" shape="rect"><span class="arrow">&#183;</span>literal<span class="arrow">&#183;</span></a> before checking
to see whether the resulting character sequence is a member of a datatype's
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical space<span class="arrow">&#183;</span></a> is a <b>pre-lexical</b> facet.</dd>
<dt><a href="#dt-primitive" shape="rect">primitive</a></dt>
<dd><b>Primitive</b>
datatypes are those
datatypes that are not
<a href="#dt-special" class="termref" shape="rect"><span class="arrow">&#183;</span>special<span class="arrow">&#183;</span></a> and are
not defined in terms of other datatypes;
they exist <em>ab initio</em>.</dd>
<dt><a href="#dt-regex" shape="rect">regular expression</a></dt>
<dd>A
<b>regular expression</b> is composed from zero or more
<a href="#dt-branch" class="termref" shape="rect"><span class="arrow">&#183;</span>branches<span class="arrow">&#183;</span></a>,
separated by
'<code>|</code>'
characters.</dd>
<dt><a href="#dt-restriction" shape="rect">restriction</a></dt>
<dd>A datatype <var>R</var>
is a <b>restriction</b> of another
datatype <var>B</var> when</dd>
<dt><a href="#dt-should" shape="rect">should</a></dt>
<dd><span class="rfc2119">should</span></dd>
<dt><a href="#dt-special" shape="rect">special</a></dt>
<dd>The <b>special</b>
datatypes are <a href="#anySimpleType" shape="rect">anySimpleType</a> and
<a href="#anyAtomicType" shape="rect">anyAtomicType</a>.</dd>
<dt><a href="#dt-specialvalue" shape="rect">special value</a></dt>
<dd>A
<b>special value</b> is
an object
whose only relevant properties for purposes of this specification are that it
is distinct from, and unequal to, any other values (special or otherwise).</dd>
<dt><a href="#dt-transitivemembership" shape="rect">transitive membership</a></dt>
<dd>The <b>transitive membership</b> of
a <a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a> is the set of its own <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a>, and the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a>
of its members, and so on. More formally, if <var>U</var> is a
<a href="#dt-union" class="termref" shape="rect"><span class="arrow">&#183;</span>union<span class="arrow">&#183;</span></a>, then (a) its <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> are in the transitive membership
of <var>U</var>, and (b) for any datatypes <var>T1</var> and
<var>T2</var>, if <var>T1</var> is in the transitive membership of
<var>U</var> and <var>T2</var> is one of the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of
<var>T1</var>, then <var>T2</var> is also in the transitive membership
of <var>U</var>.</dd>
<dt><a href="#dt-union" shape="rect">union</a></dt>
<dd><b>Union</b> datatypes
are (a) those whose <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a>,
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>, and
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> are the union of the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value spaces<span class="arrow">&#183;</span></a>,
<a href="#dt-lexical-space" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical spaces<span class="arrow">&#183;</span></a>, and
<a href="#dt-lexical-mapping" class="termref" shape="rect"><span class="arrow">&#183;</span>lexical mappings<span class="arrow">&#183;</span></a> of one or more other datatypes, which are the <a href="#dt-memberTypes" class="termref" shape="rect"><span class="arrow">&#183;</span>member types<span class="arrow">&#183;</span></a> of the
union, or (b) those derived by
<a href="#dt-fb-restriction" class="termref" shape="rect"><span class="arrow">&#183;</span>facet-based restriction<span class="arrow">&#183;</span></a> of another union datatype. </dd>
<dt><a href="#dt-unknown-dt" shape="rect">unknown</a></dt>
<dd>A
datatype which is not available for use is said to be
<b>unknown</b>.</dd>
<dt><a href="#dt-unknown-f" shape="rect">unknown</a></dt>
<dd>An
<a href="#dt-constraining-facet" class="termref" shape="rect"><span class="arrow">&#183;</span>constraining facet<span class="arrow">&#183;</span></a> which is not supported by
the processor in use is <b>unknown</b>.</dd>
<dt><a href="#dt-useroption" shape="rect">user option</a></dt>
<dd><b>user option</b></dd>
<dt><a href="#dt-user-defined" shape="rect">user-defined</a></dt>
<dd>
<b>User-defined</b> datatypes are those
datatypes that are defined by individual schema designers.
</dd>
<dt><a href="#dt-value-space" shape="rect">value space</a></dt>
<dd>The <b>value space</b> <em>of a
datatype</em> is the set of values for that
datatype.</dd>
<dt><a href="#dt-value-based" shape="rect">value-based</a></dt>
<dd>A constraining facet which
directly restricts the <a href="#dt-value-space" class="termref" shape="rect"><span class="arrow">&#183;</span>value space<span class="arrow">&#183;</span></a> of a datatype
is a <b>value-based</b> facet.</dd>
<dt><a href="#dt-wcchar" shape="rect">wildcard character</a></dt>
<dd>
The <b>wildcard character</b> is a metacharacter which matches
almost any single character:</dd>
</dl></div><div class="div1">
<h2><a name="biblio" id="biblio" shape="rect"></a>K References</h2><div class="div2">
<h3><span class="nav"> <a href="#non-normative-biblio" class="nav" shape="rect"><img alt="next sub-section" src="next.jpg" /></a></span><a name="normative-biblio" id="normative-biblio" shape="rect"></a>K.1 Normative</h3><dl><dt class="label"><a name="ieee754-2008" id="ieee754-2008" shape="rect"></a>IEEE 754-2008</dt><dd>
IEEE. <em>IEEE Standard for Floating-Point Arithmetic</em>. 29
August 2008.
<!--* <a href="http://ieeexplore.ieee.org/ISOL/standardstoc.jsp?punumber=4610933" shape="rect">http://ieeexplore.ieee.org/ISOL/standardstoc.jsp?punumber=4610933</a></dd> *-->
<a href="http://ieeexplore.ieee.org/servlet/opac?punumber=4610933" shape="rect">http://ieeexplore.ieee.org/servlet/opac?punumber=4610933</a></dd>
<dt class="label"><a name="XMLNS" id="XMLNS" shape="rect"></a>Namespaces in XML</dt><dd>
World Wide Web Consortium.&#160; <em>Namespaces in XML 1.1
(Second Edition)</em>,
ed. Tim Bray et al.
W3C Recommendation 16 August 2006.
Available at:
<a href="http://www.w3.org/TR/xml-names11/" shape="rect">http://www.w3.org/TR/xml-names11/</a>
<span class="annotation">
The edition cited is the one current at the date of publication of this
specification. Implementations <span class="rfc2119">may</span> follow the edition cited and/or
any later edition(s); it is implementation-defined which.
For details of the dependency of this specification
on Namespaces in XML 1.1, see <a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</span></dd><dt class="label"><a name="XMLNS1.0" id="XMLNS1.0" shape="rect"></a>Namespaces in XML 1.0</dt><dd>
World Wide Web Consortium.&#160; <em>Namespaces in XML
1.0 (Second Edition)</em>,
ed. Tim Bray et al.
W3C Recommendation 16 August 2006.
Available at:
<a href="http://www.w3.org/TR/xml-names/" shape="rect">http://www.w3.org/TR/xml-names/</a>
<span class="annotation">
The edition cited is the one current at the date of publication of this
specification. Implementations <span class="rfc2119">may</span> follow the edition cited and/or
any later edition(s); it is implementation-defined which.
For details of the
dependency of this specification
on Namespaces in XML 1.0, see <a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</span></dd><dt class="label"><a name="RFC3548" id="RFC3548" shape="rect"></a>RFC 3548</dt><dd>
S. Josefsson, ed.
<em>RFC 3548: The Base16, Base32, and Base64 Data Encodings</em>.
July 2003.&#160; Available at:
<a href="http://www.ietf.org/rfc/rfc3548.txt" shape="rect">
http://www.ietf.org/rfc/rfc3548.txt</a>
</dd><dt class="label"><a name="UnicodeDB" id="UnicodeDB" shape="rect"></a>Unicode Database</dt><dd>
The Unicode Consortium. <em>Unicode Character Database</em>.
Revision 3.1.0, ed. Mark Davis and Ken Whistler.
2001-02-28.
Available at:
<a href="http://www.unicode.org/Public/3.1-Update/UnicodeCharacterDatabase-3.1.0.html" shape="rect">
http://www.unicode.org/Public/3.1-Update/UnicodeCharacterDatabase-3.1.0.html</a>.
For later versions, see
<a href="http://www.unicode.org/versions/" shape="rect">http://www.unicode.org/versions/</a>.
The edition cited is the one current at the date of publication of XSD 1.0.
Implementations <span class="rfc2119">may</span> follow the edition cited and/or
any later edition(s); it is implementation-defined which.
</dd><dt class="label"><a name="XDM" id="XDM" shape="rect"></a>XDM</dt><dd>
World Wide Web Consortium. <em>XQuery 1.0 and XPath 2.0 Data Model (XDM)</em>,
ed. Mary Fern&#225;ndez et al.
W3C Recommendation 23 January 2007.
Available at:
<a href="http://www.w3.org/TR/xpath-datamodel/" shape="rect">http://www.w3.org/TR/xpath-datamodel/</a>.
</dd><dt class="label"><a name="XML" id="XML" shape="rect"></a>XML</dt><dd>
World Wide Web Consortium.
<em>Extensible Markup Language (XML) 1.1
(Second Edition)</em>,
ed.
Tim Bray et al.
W3C Recommendation 16 August 2006, edited in place 29 September 2006.
Available at
<a href="http://www.w3.org/TR/xml11/" shape="rect">http://www.w3.org/TR/xml11/</a>
<span class="annotation">
The edition cited is the one current at the date of publication of this
specification. Implementations <span class="rfc2119">may</span> follow the edition cited and/or
any later edition(s); it is implementation-defined which.
For details of the dependency of this specification
on XML 1.1, see <a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</span></dd><dt class="label"><a name="XML1.0" id="XML1.0" shape="rect"></a>XML 1.0</dt><dd>
World Wide Web Consortium.
<em>Extensible Markup Language (XML) 1.0 (Fifth Edition)</em>, ed.
Tim Bray et al.
W3C Recommendation 26 November 2008.
Available at
<a href="http://www.w3.org/TR/xml/" shape="rect">http://www.w3.org/TR/xml/</a>.
<span class="annotation">
The edition cited is the one current at the date of publication of this
specification. Implementations <span class="rfc2119">may</span> follow the edition cited and/or
any later edition(s); it is implementation-defined which.
For details of the
dependency of this specification
on XML, see <a href="#intro-relatedWork" shape="rect">Dependencies on Other Specifications (&#167;1.3)</a>.
</span>
</dd><dt class="label"><a name="XPATH2" id="XPATH2" shape="rect"></a>XPath 2.0</dt><dd>
World Wide Web Consortium. <em>XML Path Language 2.0</em>,
ed. Anders Berglund et al.
W3C Recommendation 23 January 2007.
Available at:
<a href="http://www.w3.org/TR/xpath20/" shape="rect">http://www.w3.org/TR/xpath20/</a>.
</dd><dt class="label"><a name="F_O" id="F_O" shape="rect"></a>XQuery 1.0 and XPath 2.0 Functions and Operators</dt><dd>
World Wide Web Consortium. <em>XQuery 1.0 and XPath 2.0 Functions and Operators</em>,
ed. Ashok Malhotra, Jim Melton, and Norman Walsh.
W3C Recommendation 23 January 2007
Available at:
<a href="http://www.w3.org/TR/xpath-functions/" shape="rect">http://www.w3.org/TR/xpath-functions/</a>.
</dd><dt class="label"><a name="structural-schemas" id="structural-schemas" shape="rect"></a>XSD 1.1 Part 1: Structures</dt><dd>
World Wide Web Consortium.
<em>W3C XML Schema Definition Language (XSD) 1.1 Part 1:
Structures</em>, ed. Shudi (Sandy) Gao &#39640;&#27530;&#38237;,
C. M. Sperberg-McQueen,
and Henry S. Thompson.
Candidate Recommendation 21 July 2011.
Available at: <a href="http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html" shape="rect">http://www.w3.org/TR/2011/CR-xmlschema11-1-20110721/structures.html</a>
<span class="annotation">
The edition cited is the one current at the date of publication of this
specification. Implementations <span class="rfc2119">may</span> follow the edition cited and/or
any later edition(s); it is implementation-defined which.
</span>
</dd></dl></div><div class="div2">
<h3><span class="nav"><a href="#normative-biblio" class="nav" shape="rect"><img alt="previous sub-section" src="previous.jpg" /></a> </span><a name="non-normative-biblio" id="non-normative-biblio" shape="rect"></a>K.2 Non-normative</h3><dl><dt class="label"><a name="BCP47" id="BCP47" shape="rect"></a>BCP 47</dt><dd>
Internet Engineering Task Force (IETF).
Best Current Practices 47.
2006. Available at:
<a href="http://tools.ietf.org/rfc/bcp/bcp47" shape="rect">http://tools.ietf.org/rfc/bcp/bcp47</a>.
Concatenation of
<em>RFC 4646: Tags for Identifying Languages</em>,
ed. A. Phillips and M. Davis, September 2006,
<a href="http://www.ietf.org/rfc/bcp/bcp47.txt" shape="rect">http://www.ietf.org/rfc/bcp/bcp47.txt</a>,
and
<em>RFC 4647: Matching of Language Tags</em>,
ed. A Phillips and M. Davis, September 2006,
<a href="http://www.rfc-editor.org/rfc/bcp/bcp47.txt" shape="rect">http://www.rfc-editor.org/rfc/bcp/bcp47.txt</a>.
</dd><dt class="label"><a name="clinger1990" id="clinger1990" shape="rect"></a>Clinger, WD (1990)</dt><dd>
William D Clinger.
<em>How to Read Floating Point Numbers Accurately.</em>
In <em>Proceedings of Conference on Programming Language Design and
Implementation</em>, pages 92-101.
Available at: <a href="ftp://ftp.ccs.neu.edu/pub/people/will/howtoread.ps" shape="rect">
ftp://ftp.ccs.neu.edu/pub/people/will/howtoread.ps</a>
</dd><dt class="label"><a name="html4" id="html4" shape="rect"></a>HTML 4.01</dt><dd>
World Wide Web Consortium.&#160; <em>HTML 4.01
Specification</em>, ed. Dave Raggett,
Arnaud Le Hors,
and
Ian Jacobs.
W3C Recommendation 24 December 1999.
Available at:
<a href="http://www.w3.org/TR/html401/" shape="rect">http://www.w3.org/TR/html401/</a>
</dd><dt class="label"><a name="ISO11404" id="ISO11404" shape="rect"></a>ISO 11404</dt><dd>
ISO (International Organization for Standardization).
<em>Language-independent Datatypes.</em>
ISO/IEC 11404:2007.
See
<a href="http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39479" shape="rect">http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39479</a>
</dd><dt class="label"><a name="ISO8601" id="ISO8601" shape="rect"></a>ISO 8601</dt><dd>
ISO (International Organization for Standardization).
<em>Representations of dates and times, 1988-06-15.</em>
</dd><dt class="label"><a name="ISO8601-2000" id="ISO8601-2000" shape="rect"></a>ISO 8601:2000 Second Edition</dt><dd>
ISO (International Organization for Standardization).
<em>Representations of dates and times, second edition, 2000-12-15.</em>
</dd><dt class="label"><a name="itu-r-460-6" id="itu-r-460-6" shape="rect"></a>ITU-R TF.460-6</dt><dd>
International
Telecommunication Union (ITU).
<em>Recommendation ITU-R TF.460-6: Standard-frequency
and time-signal emissions</em>.
[Geneva: ITU, February 2002.]</dd><dt class="label"><a name="IERS" id="IERS" shape="rect"></a>International Earth Rotation Service (IERS)</dt><dd>
International Earth Rotation Service (IERS).
See <a href="http://maia.usno.navy.mil" shape="rect">http://maia.usno.navy.mil</a>
</dd><dt class="label"><a name="LEIRIs" id="LEIRIs" shape="rect"></a>LEIRI</dt><dd>
<em>Legacy extended IRIs for XML resource identification</em>,
ed. Henry S. Thompson, Richard Tobin, and Norman Walsh.
W3C Working Group Note 3 November 2008.
See <a href="http://www.w3.org/TR/leiri/" shape="rect">http://www.w3.org/TR/leiri/</a></dd><dt class="label"><a name="Perl" id="Perl" shape="rect"></a>Perl</dt><dd>
The Perl Programming Language.&#160; See <a href="http://www.perl.com/pub/language/info/software.html" shape="rect">
http://www.perl.com/pub/language/info/software.html</a>
</dd><dt class="label"><a name="pd-note" id="pd-note" shape="rect"></a>Precision Decimal</dt><dd>
World Wide Web Consortium.
<em>An XSD datatype for IEEE floating-point decimal</em>,
ed. David Peterson and C. M. Sperberg-McQueen.
W3C Working Group Note 9 June 2011.
Available at
<a href="http://www.w3.org/TR/xsd-precisionDecimal/" shape="rect">http://www.w3.org/TR/xsd-precisionDecimal/</a>
</dd><dt class="label"><a name="RDFSchema" id="RDFSchema" shape="rect"></a>RDF Schema</dt><dd>
World Wide Web Consortium.
<em>RDF Vocabulary Description Language 1.0: RDF Schema</em>,
ed. Dan Brickley and R. V. Guha.
W3C Recommendation 10 February 2004.
Available at:
<a href="http://www.w3.org/TR/rdf-schema/" shape="rect">http://www.w3.org/TR/rdf-schema/</a>
</dd><dt class="label"><a name="RFC2045" id="RFC2045" shape="rect"></a>RFC 2045</dt><dd>
N. Freed and N. Borenstein.
<em>RFC 2045: Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies</em>. 1996.&#160; Available at:
<a href="http://www.ietf.org/rfc/rfc2045.txt" shape="rect">
http://www.ietf.org/rfc/rfc2045.txt</a>
</dd><dt class="label"><a name="RFC3066" id="RFC3066" shape="rect"></a>RFC 3066</dt><dd>
H. Alvestrand, ed. <em>RFC 3066: Tags for the Identification of Languages</em>
1995. Available at: <a href="http://www.ietf.org/rfc/rfc3066.txt" shape="rect">
http://www.ietf.org/rfc/rfc3066.txt</a>
</dd><dt class="label"><a name="RFC3986" id="RFC3986" shape="rect"></a>RFC 3986</dt><dd>
T. Berners-Lee,
R. Fielding, and L. Masinter,
<em>RFC 3986: Uniform Resource Identifier (URI): Generic
Syntax</em>. January 2005.&#160; Available at:
<a href="http://www.ietf.org/rfc/rfc3986.txt" shape="rect">
http://www.ietf.org/rfc/rfc3986.txt</a>
</dd><dt class="label"><a name="RFC3987" id="RFC3987" shape="rect"></a>RFC 3987</dt><dd>
M. Duerst and M. Suignard.
<em>RFC 3987: Internationalized Resource Identifiers (IRIs)
</em>. January 2005.&#160; Available at:
<a href="http://www.ietf.org/rfc/rfc3987.txt" shape="rect">
http://www.ietf.org/rfc/rfc3987.txt</a>
</dd><dt class="label"><a name="RFC4646" id="RFC4646" shape="rect"></a>RFC 4646</dt><dd>
A. Phillips and M. Davis, ed.
<em>RFC 4646: Tags for Identifying Languages</em>
2006. Available at: <a href="http://www.ietf.org/rfc/rfc4646.txt" shape="rect">
http://www.ietf.org/rfc/rfc4646.txt</a>
</dd><dt class="label"><a name="RFC4647" id="RFC4647" shape="rect"></a>RFC 4647</dt><dd>
A. Phillips and M. Davis, ed.
<em>RFC 4647: Matching of Language Tags</em>
2006. Available at: <a href="http://www.ietf.org/rfc/rfc4647.txt" shape="rect">
http://www.ietf.org/rfc/rfc4647.txt</a>
</dd><dt class="label"><a name="ruby" id="ruby" shape="rect"></a>Ruby</dt><dd>
World Wide Web Consortium.
<em>Ruby Annotation</em>,
ed. Marcin Sawicki et al.
W3C Recommendation 31 May 2001
(Markup errors corrected 25 June 2008).
Available at:
<a href="http://www.w3.org/TR/ruby/" shape="rect">http://www.w3.org/TR/ruby/</a>
</dd><dt class="label"><a name="SQL" id="SQL" shape="rect"></a>SQL</dt><dd>
ISO (International Organization for Standardization).&#160; <em>ISO/IEC
9075-2:1999, Information technology --- Database languages ---
SQL --- Part 2: Foundation (SQL/Foundation)</em>.
[Geneva]: International Organization for Standardization, 1999.
See <a href="http://www.iso.org/iso/home.htm" shape="rect">
http://www.iso.org/iso/home.htm</a>
</dd><dt class="label"><a name="ref-timezones" id="ref-timezones" shape="rect"></a>Timezones</dt><dd>
World Wide Web Consortium.
<em>Working with Time Zones</em>,
ed. Addison Phillips et al.
W3C Working Group Note 13 October 2005.
Available at <a href="http://www.w3.org/TR/timezone/" shape="rect">http://www.w3.org/TR/timezone/</a>
</dd><dt class="label"><a name="USNavy" id="USNavy" shape="rect"></a>U.S. Naval Observatory Time Service Department</dt><dd>
<em>Information about Leap Seconds</em>
Available at:
<a href="http://tycho.usno.navy.mil/leapsec.html" shape="rect">http://tycho.usno.navy.mil/leapsec.html</a>
</dd><dt class="label"><a name="USNavy_leaps" id="USNavy_leaps" shape="rect"></a>USNO Historical List</dt><dd>
U.S. Naval Observatory Time Service Department,
<em>Historical list of leap seconds</em>
Available at:
<a href="ftp://maia.usno.navy.mil/ser7/tai-utc.dat" shape="rect">ftp://maia.usno.navy.mil/ser7/tai-utc.dat</a>
</dd><dt class="label"><a name="unicodeRegEx" id="unicodeRegEx" shape="rect"></a>Unicode Regular Expression Guidelines</dt><dd>
Mark Davis.&#160; <em>Unicode Regular Expression Guidelines</em>, 1988.
Available at: <a href="http://www.unicode.org/unicode/reports/tr18/" shape="rect">
http://www.unicode.org/unicode/reports/tr18/</a>
</dd><dt class="label"><a name="unicode-escapes" id="unicode-escapes" shape="rect"></a>Unicode block names</dt><dd>
World Wide Web Consortium.
<em>Unicode block names for use in XSD regular expressions</em>,
ed. C. M. Sperberg-McQueen.
W3C Working Group Note to-be-published-rsn.
Available at:
<a href="http://www.w3.org/TR/xsd-unicode-blocknames/" shape="rect">http://www.w3.org/TR/xsd-unicode-blocknames/</a>
</dd><dt class="label"><a name="schema-primer" id="schema-primer" shape="rect"></a>XML Schema Language: Part 0 Primer</dt><dd>
World Wide Web Consortium.
XML Schema Language: Part 0 Primer
Second Edition,
ed. David C. Fallside and Priscilla Walmsley.
W3C Recommendation 28 October 2004.
Available at:
<a href="http://www.w3.org/TR/xmlschema-0/" shape="rect">
http://www.w3.org/TR/xmlschema-0/</a>
</dd><dt class="label"><a name="schema-requirements" id="schema-requirements" shape="rect"></a>XML Schema Requirements</dt><dd>
<em>XML Schema Requirements </em>,
ed.
Ashok Malhotra and Murray Maloney.
W3C
Note 15 February 1999.
Available at:
<a href="http://www.w3.org/TR/NOTE-xml-schema-req" shape="rect">http://www.w3.org/TR/NOTE-xml-schema-req</a> </dd><dt class="label"><a name="XSL" id="XSL" shape="rect"></a>XSL</dt><dd>
World Wide Web Consortium.&#160;
<em>Extensible Stylesheet Language (XSL)</em>,
ed. Anders Berglund.
W3C Recommendation 05 December 2006.
Available at:&#160;
<a href="http://www.w3.org/TR/xsl11/" shape="rect">http://www.w3.org/TR/xsl11/</a>
</dd></dl></div></div><div class="div1">
<h2><a name="acknowledgments" id="acknowledgments" shape="rect"></a>L Acknowledgements (non-normative)</h2><p>Along with the
editors thereof, the following
contributed material to the first
version
of this specification:</p><blockquote><p>Asir S. Vedamuthu, webMethods, Inc<br clear="none" />Mark Davis, IBM</p></blockquote><p>Co-editor Ashok Malhotra's work on this specification from March 1999 until
February 2001 was supported by IBM, and from then
until May 2004 by Microsoft.&#160; Since July 2004 his work
on this specification has been supported by Oracle Corporation.</p><p>The work of Dave Peterson
as a co-editor of this specification was supported by IDEAlliance
(formerly GCA) through March 2004, and beginning in
April 2004 by SGML<em>Works!</em>.</p><p>The work of C. M. Sperberg-McQueen
as a co-editor of this specification was supported by the World
Wide Web Consortium through January 2009, and beginning in
February 2009 by Black Mesa Technologies LLC.</p><p>The XML Schema Working Group acknowledges with thanks the members
of other W3C Working Groups and industry experts in other
forums who have contributed directly or indirectly to the creation
of this document and its predecessor.</p><p>At the time this Working Draft is published, the members
in good standing of the XML Schema Working Group are:</p><ul><li>Paul V. Biron, Invited expert</li><li>David Ezell, National Association of Convenience Stores (NACS) (<i>chair</i>) </li><li>Shudi (Sandy) Gao &#39640;&#27530;&#38237;, IBM</li><li>Mary Holstege, Mark Logic</li><li>Michael Kay, Invited expert</li><li>Paolo Marinelli, University of Bologna</li><li>Noah Mendelsohn, IBM</li><li>Dave Peterson, Invited expert</li><li>C. M. Sperberg-McQueen, invited expert</li><li>Henry S. Thompson, University of Edinburgh and W3C (<i>staff contact</i>) </li><li>Scott Tsao, The Boeing Company</li><li>Fabio Vitali, University of Bologna</li><li>Stefano Zacchiroli, University of Bologna</li></ul><p>The XML Schema Working Group has benefited in its work from the
participation and contributions of a number of people who are no
longer members of the Working Group in good standing at the time
of publication of this Working Draft. Their names are given below.
In particular we note
with sadness the accidental death of Mario Jeckle shortly before
publication of the first Working Draft of XML Schema 1.1.
Affiliations given are (among) those current at the time of the
individuals' work with the WG.
</p><ul><li>Paula Angerstein, Vignette Corporation</li><li>Leonid Arbouzov, Sun Microsystems</li><li>Jim Barnette, Defense Information Systems Agency (DISA)</li><li>David Beech, Oracle Corp.</li><li>Gabe Beged-Dov, Rogue Wave Software</li><li>Laila Benhlima, Ecole Mohammadia d'Ingenieurs Rabat (EMI)</li><li>Doris Bernardini, Defense Information Systems Agency (DISA)</li><li>Don Box, DevelopMentor</li><li>Allen Brown, Microsoft</li><li>Lee Buck, TIBCO Extensibility</li><li>Greg Bumgardner, Rogue Wave Software</li><li>Dean Burson, Lotus Development Corporation</li><li>Charles E. Campbell, Invited expert</li><li>Oriol Carbo, University of Edinburgh</li><li>Wayne Carr, Intel</li><li>Peter Chen, Bootstrap Alliance and LSU</li><li>Tyng-Ruey Chuang, Academia Sinica</li><li>Tony Cincotta, NIST</li><li>David Cleary, Progress Software</li><li>Mike Cokus, MITRE</li><li>Dan Connolly, W3C (<i>staff contact</i>) </li><li>Ugo Corda, Xerox</li><li>Roger L. Costello, MITRE</li><li>Joey Coyle, Health Level Seven</li><li>Haavard Danielson, Progress Software</li><li>Josef Dietl, Mozquito Technologies</li><li>Kenneth Dolson, Defense Information Systems Agency (DISA)</li><li>Andrew Eisenberg, Progress Software</li><li>Rob Ellman, Calico Commerce</li><li>Tim Ewald, Developmentor</li><li>Alexander Falk, Altova GmbH</li><li>David Fallside, IBM</li><li>George Feinberg, Object Design</li><li>Dan Fox, Defense Logistics Information Service (DLIS)</li><li>Charles Frankston, Microsoft</li><li>Matthew Fuchs, Commerce One</li><li>Andrew Goodchild, Distributed Systems Technology Centre (DSTC Pty Ltd)</li><li>Xan Gregg, TIBCO Extensibility</li><li>Paul Grosso, Arbortext, Inc</li><li>Martin Gudgin, DevelopMentor</li><li>Ernesto Guerrieri, Inso</li><li>Dave Hollander, Hewlett-Packard Company (<i>co-chair</i>) </li><li>Nelson Hung, Corel</li><li>Jane Hunter, Distributed Systems Technology Centre (DSTC Pty Ltd)</li><li>Michael Hyman, Microsoft</li><li>Renato Iannella, Distributed Systems Technology Centre (DSTC Pty Ltd)</li><li>Mario Jeckle, DaimlerChrysler</li><li>Rick Jelliffe, Academia Sinica</li><li>Marcel Jemio, Data Interchange Standards Association</li><li>Simon Johnston, Rational Software</li><li>Kohsuke Kawaguchi, Sun Microsystems</li><li>Dianne Kennedy, Graphic Communications Association</li><li>Janet Koenig, Sun Microsystems</li><li>Setrag Khoshafian, Technology Deployment International (TDI)</li><li>Melanie Kudela, Uniform Code Council</li><li>Ara Kullukian, Technology Deployment International (TDI)</li><li>Andrew Layman, Microsoft</li><li>Dmitry Lenkov, Hewlett-Packard Company</li><li>Bob Lojek, Mozquito Technologies</li><li>John McCarthy, Lawrence Berkeley National Laboratory</li><li>Matthew MacKenzie, XML Global</li><li>Eve Maler, Sun Microsystems</li><li>Ashok Malhotra, IBM, Microsoft, Oracle</li><li>Murray Maloney, Muzmo Communication, acting for Commerce One</li><li>Lisa Martin, IBM</li><li>Jim Melton, Oracle Corp</li><li>Adrian Michel, Commerce One</li><li>Alex Milowski, Invited expert</li><li>Don Mullen, TIBCO Extensibility</li><li>Murata Makoto, Xerox</li><li>Ravi Murthy, Oracle</li><li>Chris Olds, Wall Data</li><li>Frank Olken, Lawrence Berkeley National Laboratory</li><li>David Orchard, BEA Systems, Inc.</li><li>Paul Pedersen, Mark Logic Corporation</li><li>Shriram Revankar, Xerox</li><li>Mark Reinhold, Sun Microsystems</li><li>Jonathan Robie, Software AG</li><li>Cliff Schmidt, Microsoft</li><li>John C. Schneider, MITRE</li><li>Eric Sedlar, Oracle Corp.</li><li>Lew Shannon, NCR</li><li>Anli Shundi, TIBCO Extensibility</li><li>William Shea, Merrill Lynch</li><li>Jerry L. Smith, Defense Information Systems Agency (DISA)</li><li>John Stanton, Defense Information Systems Agency (DISA)</li><li>Tony Stewart, Rivcom</li><li>Bob Streich, Calico Commerce</li><li>William K. Stumbo, Xerox</li><li>Hoylen Sue, Distributed Systems Technology Centre (DSTC Pty Ltd)</li><li>Ralph Swick, W3C</li><li>John Tebbutt, NIST</li><li>Ross Thompson, Contivo</li><li>Matt Timmermans, Microstar</li><li>Jim Trezzo, Oracle Corp.</li><li>Steph Tryphonas, Microstar</li><li>Mark Tucker, Health Level Seven</li><li>Asir S. Vedamuthu, webMethods, Inc</li><li>Scott Vorthmann, TIBCO Extensibility</li><li>Priscilla Walmsley, XMLSolutions</li><li>Norm Walsh, Sun Microsystems</li><li>Cherry Washington, Defense Information Systems Agency (DISA)</li><li>Aki Yoshida, SAP AG</li><li>Kongyi Zhou, Oracle</li></ul></div></div></body>
</html>