/** * this filter generates a sha1 from the current microtime and request * useses this to fill the linux random source. * * inspired by timed_entropyd. * * ATTENTION: This module is not portable right now as i don't know * howto fill the random source for other systems. It is linux only. * * Most time was spend in figuring out how to write apache modules. * * \author Georg Hopp */ #define _POSIX_C_SOURCE 199309L #include #include #include #include #include #include #include #include #include #include #include #include #include #define min(x, y) ((x)<(y)?(x):(y)) module AP_MODULE_DECLARE_DATA entropy_module; char * getData(const char *, size_t); /** * This is taken from timer_entropyd and modified so * that the constant 1/log(2.0) is not calculated but * set directly. * * As far as i can say this correlates to the shannon * entropy algorithm with equal probabilities * for entropy where the entropy units are bits. * * But actually i am no mathemacian and my analysis capabilities * are limited. Additionally i have not analysed the linux random * character device code, so i trusted the code in timer_entropyd. */ static int get_entropy(const unsigned char * data, size_t ndata) { size_t byte_count[256]; size_t iterator; static double log2inv = 1.442695; //!< 1 / log(2.0): the entropy unit size double entropy = 0.0; memset(byte_count, 0, sizeof(byte_count)); /** * first get the amount each byte occurs in the array */ for (iterator = 0; iterator < ndata; iterator++) { byte_count[data[iterator]]++; } for (iterator = 0; iterator < 256; iterator++) { double probability = (double)byte_count[iterator] / (double)ndata; if (0.0 < probability) { entropy += probability * log2inv * (log(1.0 / probability)); } } entropy *= (double)ndata; entropy = (entropy < 0.0)? 0.0 : entropy; entropy = min((double)(ndata * 8), entropy); return entropy; } static int header_do_print(void * rec, const char * key, const char * value) { apr_sha1_ctx_t * sha1_ctx = rec; apr_sha1_update(sha1_ctx, value, strlen(value)); return 1; } static apr_status_t entropy_filter_in( ap_filter_t * filter, apr_bucket_brigade * brigade, ap_input_mode_t mode, apr_read_type_e block, apr_off_t readbytes) { apr_bucket * bucket; apr_status_t status; request_rec * request = filter->r; conn_rec * connection = filter->c; apr_sha1_ctx_t sha1_ctx; unsigned char digest[APR_SHA1_DIGESTSIZE]; struct timespec ts; clock_gettime(CLOCK_REALTIME, &ts); apr_sha1_init(&sha1_ctx); /** * add current microtime to sha1 */ apr_sha1_update_binary( &sha1_ctx, (const unsigned char *)&ts, sizeof(ts)); /** * add client ip to sha1 */ apr_sha1_update( &sha1_ctx, connection->client_ip, strlen(connection->client_ip)); /** * add request line to sha1 */ apr_sha1_update( &sha1_ctx, request->the_request, strlen(request->the_request)); /** * add all header values to sha1 */ apr_table_do(header_do_print, &sha1_ctx, request->headers_in, NULL); /** * get the request body and add it to the sha1 */ status = ap_get_brigade(filter->next, brigade, mode, block, readbytes); if (status == APR_SUCCESS) { for ( bucket = APR_BRIGADE_FIRST(brigade); bucket != APR_BRIGADE_SENTINEL(brigade); bucket = APR_BUCKET_NEXT(bucket)) { if (!(APR_BUCKET_IS_METADATA(bucket))) { const char * buffer; apr_size_t nbuffer; status = apr_bucket_read( bucket, &buffer, &nbuffer, APR_BLOCK_READ); if (status == APR_SUCCESS) { apr_sha1_update(&sha1_ctx, buffer, nbuffer); } } } } /** * get the sha1 digest */ apr_sha1_final(digest, &sha1_ctx); /** * fill /dev/random with sha1 from current request */ { int i; int entropy = get_entropy(digest, APR_SHA1_DIGESTSIZE); int fd = open("/dev/random", O_WRONLY|O_NONBLOCK); struct rand_pool_info * output; output = (struct rand_pool_info *)malloc( sizeof(struct rand_pool_info) + APR_SHA1_DIGESTSIZE); output->entropy_count = entropy; output->buf_size = APR_SHA1_DIGESTSIZE; memcpy(output->buf, digest, APR_SHA1_DIGESTSIZE); fprintf(stderr, "sha1 so far: "); for (i=0; i