Hashing functions for the taskrambler framework.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

362 lines
13 KiB

/* this code is public domain.
*
* dean gaudet <dean@arctic.org>
*
* this code was inspired by this paper:
*
* SHA: A Design for Parallel Architectures?
* Antoon Bosselaers, Ren´e Govaerts and Joos Vandewalle
* <http://www.esat.kuleuven.ac.be/~cosicart/pdf/AB-9700.pdf>
*
* more information available on this implementation here:
*
* http://arctic.org/~dean/crypto/sha1.html
*
* version: 2
*/
#include <stdint.h>
#ifdef __SSE__
#include <xmmintrin.h>
#include "tr/sha1.h"
typedef union {
uint32_t u32[4];
__m128i u128;
} v4si __attribute__((aligned(16)));
static const v4si K00_19 = { .u32 = { 0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999 } };
static const v4si K20_39 = { .u32 = { 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1 } };
static const v4si K40_59 = { .u32 = { 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc } };
static const v4si K60_79 = { .u32 = { 0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6 } };
#define UNALIGNED 1
#if UNALIGNED
#define load(p) _mm_loadu_si128(p)
#else
#define load(p) (*p)
#endif
/*
the first 16 bytes only need byte swapping
prepared points to 4x uint32_t, 16-byte aligned
W points to the 4 dwords which need preparing --
and is overwritten with the swapped bytes
*/
#define prep00_15(prep, W) \
do { \
__m128i r1, r2; \
\
r1 = (W); \
if (1) { \
r1 = _mm_shufflehi_epi16(r1, _MM_SHUFFLE(2, 3, 0, 1)); \
r1 = _mm_shufflelo_epi16(r1, _MM_SHUFFLE(2, 3, 0, 1)); \
r2 = _mm_slli_epi16(r1, 8); \
r1 = _mm_srli_epi16(r1, 8); \
r1 = _mm_or_si128(r1, r2); \
(W) = r1; \
} \
(prep).u128 = _mm_add_epi32(K00_19.u128, r1); \
} while(0)
/*
for each multiple of 4, t, we want to calculate this:
W[t+0] = rol(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1);
W[t+1] = rol(W[t-2] ^ W[t-7] ^ W[t-13] ^ W[t-15], 1);
W[t+2] = rol(W[t-1] ^ W[t-6] ^ W[t-12] ^ W[t-14], 1);
W[t+3] = rol(W[t] ^ W[t-5] ^ W[t-11] ^ W[t-13], 1);
we'll actually calculate this:
W[t+0] = rol(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1);
W[t+1] = rol(W[t-2] ^ W[t-7] ^ W[t-13] ^ W[t-15], 1);
W[t+2] = rol(W[t-1] ^ W[t-6] ^ W[t-12] ^ W[t-14], 1);
W[t+3] = rol( 0 ^ W[t-5] ^ W[t-11] ^ W[t-13], 1);
W[t+3] ^= rol(W[t+0], 1);
the parameters are:
W0 = &W[t-16];
W1 = &W[t-12];
W2 = &W[t- 8];
W3 = &W[t- 4];
and on output:
prepared = W0 + K
W0 = W[t]..W[t+3]
*/
/* note that there is a step here where i want to do a rol by 1, which
* normally would look like this:
*
* r1 = psrld r0,$31
* r0 = pslld r0,$1
* r0 = por r0,r1
*
* but instead i do this:
*
* r1 = pcmpltd r0,zero
* r0 = paddd r0,r0
* r0 = psub r0,r1
*
* because pcmpltd and paddd are availabe in both MMX units on
* efficeon, pentium-m, and opteron but shifts are available in
* only one unit.
*/
#define prep(prep, XW0, XW1, XW2, XW3, K) \
do { \
__m128i r0, r1, r2, r3; \
\
/* load W[t-4] 16-byte aligned, and shift */ \
r3 = _mm_srli_si128((XW3), 4); \
r0 = (XW0); \
/* get high 64-bits of XW0 into low 64-bits */ \
r1 = _mm_shuffle_epi32((XW0), _MM_SHUFFLE(1,0,3,2)); \
/* load high 64-bits of r1 */ \
r1 = _mm_unpacklo_epi64(r1, (XW1)); \
r2 = (XW2); \
\
r0 = _mm_xor_si128(r1, r0); \
r2 = _mm_xor_si128(r3, r2); \
r0 = _mm_xor_si128(r2, r0); \
/* unrotated W[t]..W[t+2] in r0 ... still need W[t+3] */ \
\
r2 = _mm_slli_si128(r0, 12); \
r1 = _mm_cmplt_epi32(r0, _mm_setzero_si128()); \
r0 = _mm_add_epi32(r0, r0); /* shift left by 1 */ \
r0 = _mm_sub_epi32(r0, r1); /* r0 has W[t]..W[t+2] */ \
\
r3 = _mm_srli_epi32(r2, 30); \
r2 = _mm_slli_epi32(r2, 2); \
\
r0 = _mm_xor_si128(r0, r3); \
r0 = _mm_xor_si128(r0, r2); /* r0 now has W[t+3] */ \
\
(XW0) = r0; \
(prep).u128 = _mm_add_epi32(r0, (K).u128); \
} while(0)
static inline uint32_t rol(uint32_t src, uint32_t amt)
{
/* gcc and icc appear to turn this into a rotate */
return (src << amt) | (src >> (32 - amt));
}
static inline uint32_t f00_19(uint32_t x, uint32_t y, uint32_t z)
{
/* FIPS 180-2 says this: (x & y) ^ (~x & z)
* but we can calculate it in fewer steps.
*/
return ((y ^ z) & x) ^ z;
}
static inline uint32_t f20_39(uint32_t x, uint32_t y, uint32_t z)
{
return (x ^ z) ^ y;
}
static inline uint32_t f40_59(uint32_t x, uint32_t y, uint32_t z)
{
/* FIPS 180-2 says this: (x & y) ^ (x & z) ^ (y & z)
* but we can calculate it in fewer steps.
*/
return (x & z) | ((x | z) & y);
}
static inline uint32_t f60_79(uint32_t x, uint32_t y, uint32_t z)
{
return f20_39(x, y, z);
}
#define step(nn_mm, xa, xb, xc, xd, xe, xt, input) \
do { \
(xt) = (input) + f##nn_mm((xb), (xc), (xd)); \
(xb) = rol((xb), 30); \
(xt) += ((xe) + rol((xa), 5)); \
} while(0)
void
sha1_step(uint32_t * restrict H, const uint32_t * restrict inputu, size_t num_steps)
{
const __m128i * restrict input = (const __m128i *)inputu;
__m128i W0, W1, W2, W3;
v4si prep0, prep1, prep2;
uint32_t a, b, c, d, e, t;
a = H[0];
b = H[1];
c = H[2];
d = H[3];
e = H[4];
/* i've tried arranging the SSE2 code to be 4, 8, 12, and 16
* steps ahead of the integer code. 12 steps ahead seems
* to produce the best performance. -dean
*/
W0 = load(&input[0]);
prep00_15(prep0, W0); /* prepare for 00 through 03 */
W1 = load(&input[1]);
prep00_15(prep1, W1); /* prepare for 04 through 07 */
W2 = load(&input[2]);
prep00_15(prep2, W2); /* prepare for 08 through 11 */
for (;;) {
W3 = load(&input[3]);
step(00_19, a, b, c, d, e, t, prep0.u32[0]); /* 00 */
step(00_19, t, a, b, c, d, e, prep0.u32[1]); /* 01 */
step(00_19, e, t, a, b, c, d, prep0.u32[2]); /* 02 */
step(00_19, d, e, t, a, b, c, prep0.u32[3]); /* 03 */
prep00_15(prep0, W3);
step(00_19, c, d, e, t, a, b, prep1.u32[0]); /* 04 */
step(00_19, b, c, d, e, t, a, prep1.u32[1]); /* 05 */
step(00_19, a, b, c, d, e, t, prep1.u32[2]); /* 06 */
step(00_19, t, a, b, c, d, e, prep1.u32[3]); /* 07 */
prep(prep1, W0, W1, W2, W3, K00_19); /* prepare for 16 through 19 */
step(00_19, e, t, a, b, c, d, prep2.u32[0]); /* 08 */
step(00_19, d, e, t, a, b, c, prep2.u32[1]); /* 09 */
step(00_19, c, d, e, t, a, b, prep2.u32[2]); /* 10 */
step(00_19, b, c, d, e, t, a, prep2.u32[3]); /* 11 */
prep(prep2, W1, W2, W3, W0, K20_39); /* prepare for 20 through 23 */
step(00_19, a, b, c, d, e, t, prep0.u32[0]); /* 12 */
step(00_19, t, a, b, c, d, e, prep0.u32[1]); /* 13 */
step(00_19, e, t, a, b, c, d, prep0.u32[2]); /* 14 */
step(00_19, d, e, t, a, b, c, prep0.u32[3]); /* 15 */
prep(prep0, W2, W3, W0, W1, K20_39);
step(00_19, c, d, e, t, a, b, prep1.u32[0]); /* 16 */
step(00_19, b, c, d, e, t, a, prep1.u32[1]); /* 17 */
step(00_19, a, b, c, d, e, t, prep1.u32[2]); /* 18 */
step(00_19, t, a, b, c, d, e, prep1.u32[3]); /* 19 */
prep(prep1, W3, W0, W1, W2, K20_39);
step(20_39, e, t, a, b, c, d, prep2.u32[0]); /* 20 */
step(20_39, d, e, t, a, b, c, prep2.u32[1]); /* 21 */
step(20_39, c, d, e, t, a, b, prep2.u32[2]); /* 22 */
step(20_39, b, c, d, e, t, a, prep2.u32[3]); /* 23 */
prep(prep2, W0, W1, W2, W3, K20_39);
step(20_39, a, b, c, d, e, t, prep0.u32[0]); /* 24 */
step(20_39, t, a, b, c, d, e, prep0.u32[1]); /* 25 */
step(20_39, e, t, a, b, c, d, prep0.u32[2]); /* 26 */
step(20_39, d, e, t, a, b, c, prep0.u32[3]); /* 27 */
prep(prep0, W1, W2, W3, W0, K20_39);
step(20_39, c, d, e, t, a, b, prep1.u32[0]); /* 28 */
step(20_39, b, c, d, e, t, a, prep1.u32[1]); /* 29 */
step(20_39, a, b, c, d, e, t, prep1.u32[2]); /* 30 */
step(20_39, t, a, b, c, d, e, prep1.u32[3]); /* 31 */
prep(prep1, W2, W3, W0, W1, K40_59);
step(20_39, e, t, a, b, c, d, prep2.u32[0]); /* 32 */
step(20_39, d, e, t, a, b, c, prep2.u32[1]); /* 33 */
step(20_39, c, d, e, t, a, b, prep2.u32[2]); /* 34 */
step(20_39, b, c, d, e, t, a, prep2.u32[3]); /* 35 */
prep(prep2, W3, W0, W1, W2, K40_59);
step(20_39, a, b, c, d, e, t, prep0.u32[0]); /* 36 */
step(20_39, t, a, b, c, d, e, prep0.u32[1]); /* 37 */
step(20_39, e, t, a, b, c, d, prep0.u32[2]); /* 38 */
step(20_39, d, e, t, a, b, c, prep0.u32[3]); /* 39 */
prep(prep0, W0, W1, W2, W3, K40_59);
step(40_59, c, d, e, t, a, b, prep1.u32[0]); /* 40 */
step(40_59, b, c, d, e, t, a, prep1.u32[1]); /* 41 */
step(40_59, a, b, c, d, e, t, prep1.u32[2]); /* 42 */
step(40_59, t, a, b, c, d, e, prep1.u32[3]); /* 43 */
prep(prep1, W1, W2, W3, W0, K40_59);
step(40_59, e, t, a, b, c, d, prep2.u32[0]); /* 44 */
step(40_59, d, e, t, a, b, c, prep2.u32[1]); /* 45 */
step(40_59, c, d, e, t, a, b, prep2.u32[2]); /* 46 */
step(40_59, b, c, d, e, t, a, prep2.u32[3]); /* 47 */
prep(prep2, W2, W3, W0, W1, K40_59);
step(40_59, a, b, c, d, e, t, prep0.u32[0]); /* 48 */
step(40_59, t, a, b, c, d, e, prep0.u32[1]); /* 49 */
step(40_59, e, t, a, b, c, d, prep0.u32[2]); /* 50 */
step(40_59, d, e, t, a, b, c, prep0.u32[3]); /* 51 */
prep(prep0, W3, W0, W1, W2, K60_79);
step(40_59, c, d, e, t, a, b, prep1.u32[0]); /* 52 */
step(40_59, b, c, d, e, t, a, prep1.u32[1]); /* 53 */
step(40_59, a, b, c, d, e, t, prep1.u32[2]); /* 54 */
step(40_59, t, a, b, c, d, e, prep1.u32[3]); /* 55 */
prep(prep1, W0, W1, W2, W3, K60_79);
step(40_59, e, t, a, b, c, d, prep2.u32[0]); /* 56 */
step(40_59, d, e, t, a, b, c, prep2.u32[1]); /* 57 */
step(40_59, c, d, e, t, a, b, prep2.u32[2]); /* 58 */
step(40_59, b, c, d, e, t, a, prep2.u32[3]); /* 59 */
prep(prep2, W1, W2, W3, W0, K60_79);
step(60_79, a, b, c, d, e, t, prep0.u32[0]); /* 60 */
step(60_79, t, a, b, c, d, e, prep0.u32[1]); /* 61 */
step(60_79, e, t, a, b, c, d, prep0.u32[2]); /* 62 */
step(60_79, d, e, t, a, b, c, prep0.u32[3]); /* 63 */
prep(prep0, W2, W3, W0, W1, K60_79);
step(60_79, c, d, e, t, a, b, prep1.u32[0]); /* 64 */
step(60_79, b, c, d, e, t, a, prep1.u32[1]); /* 65 */
step(60_79, a, b, c, d, e, t, prep1.u32[2]); /* 66 */
step(60_79, t, a, b, c, d, e, prep1.u32[3]); /* 67 */
prep(prep1, W3, W0, W1, W2, K60_79);
step(60_79, e, t, a, b, c, d, prep2.u32[0]); /* 68 */
step(60_79, d, e, t, a, b, c, prep2.u32[1]); /* 69 */
step(60_79, c, d, e, t, a, b, prep2.u32[2]); /* 70 */
step(60_79, b, c, d, e, t, a, prep2.u32[3]); /* 71 */
--num_steps;
if (num_steps == 0) break;
input += 4;
W0 = load(&input[0]);
prep00_15(prep2, W0); /* prepare for next 00 through 03 */
W1 = load(&input[1]);
step(60_79, a, b, c, d, e, t, prep0.u32[0]); /* 72 */
step(60_79, t, a, b, c, d, e, prep0.u32[1]); /* 73 */
step(60_79, e, t, a, b, c, d, prep0.u32[2]); /* 74 */
step(60_79, d, e, t, a, b, c, prep0.u32[3]); /* 75 */
prep0 = prep2; /* top of loop expects this in prep0 */
prep00_15(prep2, W1); /* prepare for next 04 through 07 */
W2 = load(&input[2]);
step(60_79, c, d, e, t, a, b, prep1.u32[0]); /* 76 */
step(60_79, b, c, d, e, t, a, prep1.u32[1]); /* 77 */
step(60_79, a, b, c, d, e, t, prep1.u32[2]); /* 78 */
step(60_79, t, a, b, c, d, e, prep1.u32[3]); /* 79 */
prep1 = prep2; /* top of loop expects this in prep1 */
prep00_15(prep2, W2); /* prepare for next 08 through 11 */
/* e, t, a, b, c, d */
H[0] += e;
H[1] += t;
H[2] += a;
H[3] += b;
H[4] += c;
a = H[0];
b = H[1];
c = H[2];
d = H[3];
e = H[4];
}
/* no more input to prepare */
step(60_79, a, b, c, d, e, t, prep0.u32[0]); /* 72 */
step(60_79, t, a, b, c, d, e, prep0.u32[1]); /* 73 */
step(60_79, e, t, a, b, c, d, prep0.u32[2]); /* 74 */
step(60_79, d, e, t, a, b, c, prep0.u32[3]); /* 75 */
/* no more input to prepare */
step(60_79, c, d, e, t, a, b, prep1.u32[0]); /* 76 */
step(60_79, b, c, d, e, t, a, prep1.u32[1]); /* 77 */
step(60_79, a, b, c, d, e, t, prep1.u32[2]); /* 78 */
step(60_79, t, a, b, c, d, e, prep1.u32[3]); /* 79 */
/* e, t, a, b, c, d */
H[0] += e;
H[1] += t;
H[2] += a;
H[3] += b;
H[4] += c;
}
#endif
// vim: set ts=4 sw=4: