You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
115 lines
3.7 KiB
115 lines
3.7 KiB
//
|
|
// A «continued fraction» is a representation of a fraction as a vector
|
|
// of integrals… Irrational fractions will result in infinite most of the
|
|
// time repetitive vectors. They can be used to get a resonable approximation
|
|
// for sqrt on fractionals.
|
|
//
|
|
// Georg Hopp <georg@steffers.org>
|
|
//
|
|
// Copyright © 2019 Georg Hopp
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
use crate::Fractional;
|
|
|
|
#[derive(Debug)]
|
|
pub struct Continuous (Vec<i64>);
|
|
|
|
impl Continuous {
|
|
// calculate a sqrt as continued fraction sequence. Taken from:
|
|
// https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#
|
|
// Continued_fraction_expansion
|
|
pub fn sqrt(x :i64, a0 :i64) -> Self {
|
|
fn inner(v :&mut [i64], x :i64, a0 :i64, mn :i64, dn :i64, an :i64) {
|
|
let mn_1 = dn * an - mn;
|
|
let dn_1 = (x - mn_1 * mn_1) / dn;
|
|
let an_1 = (a0 + mn_1) / dn_1;
|
|
|
|
v[0] = an;
|
|
// The convergence criteria „an_1 == 2 * a0“ is not good for
|
|
// very small x thus I decided to break the iteration at constant
|
|
// time. Which is the 5 below.
|
|
if v.len() > 1 {
|
|
inner(&mut v[1..], x, a0, mn_1, dn_1, an_1);
|
|
}
|
|
}
|
|
|
|
let mut v :Vec<i64> = vec!(0; 5);
|
|
inner(&mut v, x, a0, 0, 1, a0);
|
|
Continuous(v)
|
|
}
|
|
|
|
// general continous fraction form of a fractional...
|
|
pub fn from_prec(f :&Fractional, prec :Option<usize>) -> Self {
|
|
fn inner(v :&mut Vec<i64>, f :Fractional, prec :Option<usize>) {
|
|
let mut process = |prec :Option<usize>| {
|
|
let Fractional(n, d) = f;
|
|
let a = n / d;
|
|
let Fractional(_n, _d) = f.noreduce_sub(a.into());
|
|
|
|
v.push(a);
|
|
match _n {
|
|
1 => v.push(_d),
|
|
0 => {},
|
|
_ => inner(v, Fractional(_d, _n), prec),
|
|
}
|
|
};
|
|
|
|
match prec {
|
|
Some(0) => {},
|
|
None => process(None),
|
|
Some(p) => process(Some(p - 1)),
|
|
}
|
|
}
|
|
|
|
let mut v = match prec {
|
|
None => Vec::with_capacity(100),
|
|
Some(p) => Vec::with_capacity(p + 1),
|
|
};
|
|
|
|
inner(&mut v, *f, prec);
|
|
Continuous(v)
|
|
}
|
|
|
|
pub fn into_prec(&self, prec :Option<usize>) -> Fractional {
|
|
let Continuous(c) = self;
|
|
let p = match prec {
|
|
Some(p) => if p <= c.len() { p } else { c.len() },
|
|
None => c.len(),
|
|
};
|
|
|
|
let to_frac = |acc :Fractional, x :&i64| {
|
|
let Fractional(an, ad) = acc.noreduce_add((*x).into());
|
|
Fractional(ad, an)
|
|
};
|
|
|
|
let Fractional(n, d) = c[..p]
|
|
. into_iter()
|
|
. rev()
|
|
. fold(Fractional(0, 1), to_frac);
|
|
Fractional(d, n)
|
|
}
|
|
}
|
|
|
|
impl From<&Fractional> for Continuous {
|
|
fn from(x :&Fractional) -> Self {
|
|
Self::from_prec(x, None)
|
|
}
|
|
}
|
|
|
|
impl Into<Fractional> for &Continuous {
|
|
fn into(self) -> Fractional {
|
|
(&self).into_prec(None)
|
|
}
|
|
}
|