A 3D math playground visualizing on a canvas trait which the user needs to implement e.g. using XCB or a HTML5 Canvas for drawing as WebAssembly application. (Both exists in separate projects.)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

221 lines
7.3 KiB

//
// Test our fractional crate / module...
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::convert::{TryFrom, TryInto, Into};
use std::num::TryFromIntError;
use std::f64::consts::PI as FPI;
use fractional::fractional::{Fractional, from_vector, Continuous};
use fractional::trigonometry::{sin, cos, tan, PI};
use fractional::vector::{Vector};
use fractional::transform::{translate, rotate_x, rotate_y, rotate_z, rotate_v};
fn mean(v: &Vec<i64>) -> Result<Fractional, TryFromIntError> {
let r = v.iter().fold(0, |acc, x| acc + x);
let l = i64::try_from(v.len())?;
Ok(Fractional(r, l))
}
fn common_fractional() {
let a = vec![3, 6, 1, 9];
let b = from_vector(&a);
let c = mean(&a).unwrap(); // This might fail if the len of the
// vector (usize) does not fit into i32.
let cr :f64 = c.try_into().unwrap();
println!(" [i32] : {:?}", a);
println!(" [Fractional] : {:?}", b);
println!(" mean of [i32] : {}" , c);
println!(" as f64 : {}" , cr);
println!(" again as f64 : {}" , TryInto::<f64>::try_into(c).unwrap());
}
fn continuous() {
let d = Fractional(45, 16);
let e = Fractional(16, 45);
let dc :Continuous = d.into();
let ec :Continuous = e.into();
println!("cont frac of d : {} => {:?}", d, dc);
println!("cont frac of e : {} => {:?}", e, ec);
println!(" reverted dc : {:?} {}", dc, Into::<Fractional>::into(&dc));
println!(" reverted ec : {:?} {}", ec, Into::<Fractional>::into(&ec));
}
fn sqrt() {
let f = Fractional(-9, 4);
let fr :f64 = f.try_into().unwrap();
let sq = f.sqrt();
let _sq = fr.sqrt();
println!("{:>14} : {:?} / {}", format!("sqrt {}", f), sq, _sq);
for f in [ Fractional(9, 4)
, Fractional(45, 16)
, Fractional(16, 45)
, Fractional(9, 3) ].iter() {
let fr :f64 = (*f).try_into().unwrap();
let sq = f.sqrt().unwrap();
let sqr :f64 = sq.try_into().unwrap();
let _sqr = fr.sqrt();
println!("{:>14} : {} {} / {}", format!("sqrt {}", f), sq, sqr, _sqr);
}
}
fn pi() {
let pir :f64 = PI.try_into().unwrap();
let pit :(i32, i32) = PI.try_into().unwrap();
let pi2r :f64 = (PI * PI).try_into().unwrap();
println!(" Rust π : {}" , FPI);
println!(" π : {} {}" , PI, pir);
println!(" π as tuple : {:?}" , pit);
println!(" Rust π² : {}" , FPI * FPI);
println!(" π² : {} {}" , PI * PI, pi2r);
}
fn _sin() {
for d in [ 0, 45, 90, 135, 180, 225, 270, 315
, 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
let s = sin(*d as i32);
let sr :f64 = s.try_into().unwrap();
let _s = f64::sin(*d as f64 * FPI / 180.0);
println!("{:>14} : {} {} / {}", format!("sin {}", d), s, sr, _s);
}
}
fn _tan() {
for d in [ 0, 45, 90, 135, 180, 225, 270, 315
, 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
let s = tan(*d as i32);
let sr :f64 = s.try_into().unwrap();
let _s = f64::tan(*d as f64 * FPI / 180.0);
println!("{:>14} : {} {} / {}", format!("tan {}", d), s, sr, _s);
}
}
fn _cos() {
for d in [ 0, 45, 90, 135, 180, 225, 270, 315
, 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() {
let s = cos(*d as i32);
let sr :f64 = s.try_into().unwrap();
let _s = f64::cos(*d as f64 * FPI / 180.0);
println!("{:>14} : {} {} / {}", format!("cos {}", d), s, sr, _s);
}
}
fn _vector() {
let v1 = Vector(1.into(), 2.into(), 3.into());
let v2 = Vector(2.into(), 2.into(), 3.into());
let s :Fractional = 3.into();
println!("{:>14} : {}", "Vector v1", v1);
println!("{:>14} : {}", "Vector v2", v2);
println!("{:>14} : {}", "abs v1", v1.abs());
println!("{:>14} : {}", "-v1", -v1);
println!("{:>14} : {}", "v1 + v1", v1 + v1);
println!("{:>14} : {}", "v1 - v1", v1 - v1);
println!("{:>14} : {}", "v2 - v1", v2 - v1);
println!("{:>14} : {}", format!("v1 * {}", s), v1.mul(&s));
println!("{:>14} : {}", "norm v1", v1.norm());
println!("{:>14} : {}", "abs norm v1", v1.norm().abs());
println!("{:>14} : {}", "abs v1", v1.abs());
println!("{:>14} : {}", "norm * abs", v1.norm().mul(&v1.abs()));
println!("{:>14} : {}", "distance v1 v2", v1.distance(v2));
println!("{:>14} : {}", "distance v2 v1", v2.distance(v1));
println!("{:>14} : {}", "v1 dot v2", v1.dot(v2));
println!("{:>14} : {}", "v2 dot v1", v2.dot(v1));
println!("{:>14} : {}", "v1 * v2", v1 * v2);
println!("{:>14} : {}", "v2 * v1", v2 * v1);
}
fn _transform() {
let v = Vector(1.into(), 1.into(), 1.into());
let v1 = Vector(1.into(), 2.into(), 3.into());
let mt = translate(v);
println!("{:>14} : {}", "Vector v1", v1);
println!("{:>14} : {}", "translate v1", mt.apply(&v1));
println!();
let v2 = Vector(1.into(), 1.into(), 0.into());
println!("{:>14} : {}", "Vector v2", v2);
for d in [ 30, 45, 60, 90, 120, 135, 150, 180
, 210, 225, 240, 270, 300, 315, 330 ].iter() {
let m = rotate_x(*d as i32);
println!("{:>14} : {}", format!("rot_x {} v2", d), m.apply(&v2));
}
println!();
println!("{:>14} : {}", "Vector v2", v2);
for d in [ 30, 45, 60, 90, 120, 135, 150, 180
, 210, 225, 240, 270, 300, 315, 330 ].iter() {
let m = rotate_y(*d as i32);
println!("{:>14} : {}", format!("rot_y {} v2", d), m.apply(&v2));
}
println!();
for d in [ 30, 45, 60, 90, 120, 135, 150, 180
, 210, 225, 240, 270, 300, 315, 330 ].iter() {
let m = rotate_x(*d as i32) * rotate_y(*d as i32);
println!("{:>14} : {}", format!("rot_xy {} v2", d), m.apply(&v2));
}
println!();
let v3 = Vector(1.into(), 0.into(), 1.into());
println!("{:>14} : {}", "Vector v3", v3);
for d in [ 30, 45, 60, 90, 120, 135, 150, 180
, 210, 225, 240, 270, 300, 315, 330 ].iter() {
let m = rotate_z(*d as i32);
println!("{:>14} : {}", format!("rot_z {} v3", d), m.apply(&v3));
}
println!();
for d in [ 30, 45, 60, 90, 120, 135, 150, 180
, 210, 225, 240, 270, 300, 315, 330 ].iter() {
let m = rotate_v(&v, *d as i32);
println!("{:>14} : {}", format!("rot_v {} v2", d), m.apply(&v2));
}
}
fn main() {
common_fractional();
println!();
continuous();
println!();
sqrt();
println!();
pi();
println!();
_sin();
println!();
_cos();
println!();
_tan();
println!();
_vector();
println!();
_transform();
}