A 3D math playground visualizing on a canvas trait which the user needs to implement e.g. using XCB or a HTML5 Canvas for drawing as WebAssembly application. (Both exists in separate projects.)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

132 lines
3.9 KiB

//
// Test our fractional crate / module...
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::convert::{TryFrom, TryInto, Into};
use std::num::TryFromIntError;
use std::f64::consts::PI as FPI;
use fractional::fractional::{Fractional, from_vector, Continuous};
use fractional::trigonometry::{sin, cos, PI};
struct Vector {
x: Fractional,
y: Fractional,
z: Fractional,
}
fn mean(v: &Vec<i64>) -> Result<Fractional, TryFromIntError> {
let r = v.iter().fold(0, |acc, x| acc + x);
let l = i64::try_from(v.len())?;
Ok(Fractional(r, l))
}
fn common_fractional() {
let a = vec![3, 6, 1, 9];
let b = from_vector(&a);
let c = mean(&a).unwrap(); // This might fail if the len of the
// vector (usize) does not fit into i32.
let cr :f64 = c.try_into().unwrap();
println!(" [i32] : {:?}", a);
println!(" [Fractional] : {:?}", b);
println!(" mean of [i32] : {}" , c);
println!(" as f64 : {}" , cr);
println!(" again as f64 : {}" , TryInto::<f64>::try_into(c).unwrap());
}
fn continuous() {
let d = Fractional(45, 16);
let e = Fractional(16, 45);
let dc :Continuous = d.into();
let ec :Continuous = e.into();
println!("cont frac of d : {} => {:?}", d, dc);
println!("cont frac of e : {} => {:?}", e, ec);
println!(" reverted dc : {:?} {}", dc, Into::<Fractional>::into(&dc));
println!(" reverted ec : {:?} {}", ec, Into::<Fractional>::into(&ec));
}
fn sqrt() {
let f = Fractional(-9, 4);
let fr :f64 = f.try_into().unwrap();
let sq = f.sqrt();
let _sq = f64::sqrt(fr);
println!("{:>14} : {:?} / {}", format!("sqrt {}", f), sq, _sq);
for f in [ Fractional(9, 4)
, Fractional(45, 16)
, Fractional(16, 45)
, Fractional(9, 3) ].iter() {
let fr :f64 = (*f).try_into().unwrap();
let sq = f.sqrt().unwrap();
let sqr :f64 = sq.try_into().unwrap();
let _sqr = f64::sqrt(fr);
println!("{:>14} : {} {} / {}", format!("sqrt {}", f), sq, sqr, _sqr);
}
}
fn pi() {
let pir :f64 = PI.try_into().unwrap();
let pit :(i32, i32) = PI.try_into().unwrap();
let pi2r :f64 = (PI * PI).try_into().unwrap();
println!(" Rust π : {}" , FPI);
println!(" π : {} {}" , PI, pir);
println!(" π as tuple : {:?}" , pit);
println!(" Rust π² : {}" , FPI * FPI);
println!(" π² : {} {}" , PI * PI, pi2r);
}
fn _sin() {
for d in [9, 17, 31, 45, 73, 123, 213, 312, 876].iter() {
let s = sin(*d as i32);
let sr :f64 = s.try_into().unwrap();
let _s = f64::sin(*d as f64 * FPI / 180.0);
println!("{:>14} : {} {} / {}", format!("sin {}", d), s, sr, _s);
}
}
fn _cos() {
for d in [9, 17, 31, 45, 73, 123, 213, 312, 876].iter() {
let s = cos(*d as i32);
let sr :f64 = s.try_into().unwrap();
let _s = f64::cos(*d as f64 * FPI / 180.0);
println!("{:>14} : {} {} / {}", format!("cos {}", d), s, sr, _s);
}
}
fn main() {
common_fractional();
println!();
continuous();
println!();
sqrt();
println!();
pi();
println!();
_sin();
println!();
_cos();
}