A 3D math playground visualizing on a canvas trait which the user needs to implement e.g. using XCB or a HTML5 Canvas for drawing as WebAssembly application. (Both exists in separate projects.)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

150 lines
5.5 KiB

//
// Basic geometric things...
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::convert::From;
use std::ops::{Add,Sub,Neg,Mul,Div};
use std::fmt::Debug;
use crate::easel::{Canvas,Coordinate,Coordinates,Polygon};
use crate::transform::TMatrix;
use crate::trigonometry::Trig;
use crate::vector::Vector;
#[derive(Debug)]
pub struct Polyeder<T>
where T: Add + Sub + Neg + Mul + Div + Copy + Trig {
points :Vec<Vector<T>>,
faces :Vec<Vec<usize>>,
}
pub trait Primitives<T>
where T: Add + Sub + Neg + Mul + Div + Copy + Trig + From<i32> {
fn transform(&self, m :&TMatrix<T>) -> Self;
fn project(&self, camera :&Camera<T>) -> Vec<Polygon>;
}
pub struct Camera<T>
where T: Add + Sub + Neg + Mul + Div + Copy + Trig {
width :T,
height :T,
fovx :T,
fovy :T,
}
impl<T> Camera<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Copy + Trig + From<i32> {
pub fn new(c :&dyn Canvas, angle :i32) -> Self {
let width = <T as From<i32>>::from(c.width() as i32);
let height = <T as From<i32>>::from(c.height() as i32);
// The calculations for fovx and fovy are taken from a book, but I
// have the impression, coming from my limited algebra knowledge,
// that they are always equal…
Camera { width: width
, height: height
, fovx: T::cot(angle) * width
, fovy: width / height * T::cot(angle) * height }
}
pub fn project(&self, v :Vector<T>) -> Coordinate {
let f2 = From::<i32>::from(2);
let xs = v.x() / v.z() * self.fovx + self.width / f2;
let ys = v.y() / v.z() * self.fovy + self.height / f2;
Coordinate(T::round(&xs), T::round(&ys))
}
}
impl<T> Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Copy + Trig + From<i32> {
// https://rechneronline.de/pi/tetrahedron.php
pub fn tetrahedron(a :T) -> Polyeder<T> {
let f0 :T = From::<i32>::from(0);
let f3 :T = From::<i32>::from(3);
let f4 :T = From::<i32>::from(4);
let f6 :T = From::<i32>::from(6);
let f12 :T = From::<i32>::from(12);
let yi :T = a / f12 * T::sqrt(f6).unwrap();
let yc :T = a / f4 * T::sqrt(f6).unwrap();
let zi :T = T::sqrt(f3).unwrap() / f6 * a;
let zc :T = T::sqrt(f3).unwrap() / f3 * a;
let ah :T = a / From::<i32>::from(2);
// half the height in y
let _yh :T = a / f6 * T::sqrt(f6).unwrap();
// half the deeps in z
let _zh :T = T::sqrt(f3).unwrap() / f4 * a;
Polyeder{ points: vec!( Vector( f0, yc, f0)
, Vector(-ah, -yi, -zi)
, Vector( ah, -yi, -zi)
, Vector( f0, -yi, zc) )
, faces: vec!( vec!(1, 2, 3)
, vec!(1, 0, 2)
, vec!(3, 0, 1)
, vec!(2, 0, 3) )}
}
pub fn cube(a :T) -> Polyeder<T> {
let ah :T = a / From::<i32>::from(2);
Polyeder{ points: vec!( Vector(-ah, ah, -ah) // 0 => front 1
, Vector(-ah, -ah, -ah) // 1 => front 2
, Vector( ah, -ah, -ah) // 2 => front 3
, Vector( ah, ah, -ah) // 3 => front 4
, Vector(-ah, ah, ah) // 4 => back 1
, Vector(-ah, -ah, ah) // 5 => back 2
, Vector( ah, -ah, ah) // 6 => back 3
, Vector( ah, ah, ah) ) // 7 => back 4
, faces: vec!( vec!(0, 1, 2, 3) // front
, vec!(7, 6, 5, 4) // back
, vec!(1, 5, 6, 2) // top
, vec!(0, 3, 7, 4) // bottom
, vec!(0, 4, 5, 1) // left
, vec!(2, 6, 7, 3) )} // right
}
}
impl<T> Primitives<T> for Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Copy + Trig + From<i32> + From<i32> {
fn transform(&self, m :&TMatrix<T>) -> Self {
Polyeder{ points: self.points.iter().map(|p| m.apply(p)).collect()
, faces: self.faces.to_vec() }
}
fn project(&self, camera :&Camera<T>) -> Vec<Polygon> {
fn polygon<I>(c :I) -> Polygon
where I: Iterator<Item = Coordinate> {
Polygon(Coordinates(c.collect()))
}
let to_coord = |p :&usize| camera.project(self.points[*p]);
let to_poly = |f :&Vec<usize>| polygon(f.iter().map(to_coord));
self.faces.iter().map(to_poly).collect()
}
}