You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
5.5 KiB
150 lines
5.5 KiB
//
|
|
// Basic geometric things...
|
|
//
|
|
// Georg Hopp <georg@steffers.org>
|
|
//
|
|
// Copyright © 2019 Georg Hopp
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
//
|
|
use std::convert::From;
|
|
use std::ops::{Add,Sub,Neg,Mul,Div};
|
|
use std::fmt::Debug;
|
|
|
|
use crate::easel::{Canvas,Coordinate,Coordinates,Polygon};
|
|
use crate::transform::TMatrix;
|
|
use crate::trigonometry::Trig;
|
|
use crate::vector::Vector;
|
|
|
|
#[derive(Debug)]
|
|
pub struct Polyeder<T>
|
|
where T: Add + Sub + Neg + Mul + Div + Copy + Trig {
|
|
points :Vec<Vector<T>>,
|
|
faces :Vec<Vec<usize>>,
|
|
}
|
|
|
|
pub trait Primitives<T>
|
|
where T: Add + Sub + Neg + Mul + Div + Copy + Trig + From<i32> {
|
|
fn transform(&self, m :&TMatrix<T>) -> Self;
|
|
fn project(&self, camera :&Camera<T>) -> Vec<Polygon>;
|
|
}
|
|
|
|
pub struct Camera<T>
|
|
where T: Add + Sub + Neg + Mul + Div + Copy + Trig {
|
|
width :T,
|
|
height :T,
|
|
fovx :T,
|
|
fovy :T,
|
|
}
|
|
|
|
impl<T> Camera<T>
|
|
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
|
|
+ Mul<Output = T> + Div<Output = T>
|
|
+ Copy + Trig + From<i32> {
|
|
pub fn new(c :&dyn Canvas, angle :i32) -> Self {
|
|
let width = <T as From<i32>>::from(c.width() as i32);
|
|
let height = <T as From<i32>>::from(c.height() as i32);
|
|
|
|
// The calculations for fovx and fovy are taken from a book, but I
|
|
// have the impression, coming from my limited algebra knowledge,
|
|
// that they are always equal…
|
|
Camera { width: width
|
|
, height: height
|
|
, fovx: T::cot(angle) * width
|
|
, fovy: width / height * T::cot(angle) * height }
|
|
}
|
|
|
|
pub fn project(&self, v :Vector<T>) -> Coordinate {
|
|
let f2 = From::<i32>::from(2);
|
|
let xs = v.x() / v.z() * self.fovx + self.width / f2;
|
|
let ys = v.y() / v.z() * self.fovy + self.height / f2;
|
|
|
|
Coordinate(T::round(&xs), T::round(&ys))
|
|
}
|
|
}
|
|
|
|
impl<T> Polyeder<T>
|
|
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
|
|
+ Mul<Output = T> + Div<Output = T>
|
|
+ Copy + Trig + From<i32> {
|
|
// https://rechneronline.de/pi/tetrahedron.php
|
|
pub fn tetrahedron(a :T) -> Polyeder<T> {
|
|
let f0 :T = From::<i32>::from(0);
|
|
let f3 :T = From::<i32>::from(3);
|
|
let f4 :T = From::<i32>::from(4);
|
|
let f6 :T = From::<i32>::from(6);
|
|
let f12 :T = From::<i32>::from(12);
|
|
|
|
let yi :T = a / f12 * T::sqrt(f6).unwrap();
|
|
let yc :T = a / f4 * T::sqrt(f6).unwrap();
|
|
let zi :T = T::sqrt(f3).unwrap() / f6 * a;
|
|
let zc :T = T::sqrt(f3).unwrap() / f3 * a;
|
|
let ah :T = a / From::<i32>::from(2);
|
|
|
|
// half the height in y
|
|
let _yh :T = a / f6 * T::sqrt(f6).unwrap();
|
|
// half the deeps in z
|
|
let _zh :T = T::sqrt(f3).unwrap() / f4 * a;
|
|
|
|
Polyeder{ points: vec!( Vector( f0, yc, f0)
|
|
, Vector(-ah, -yi, -zi)
|
|
, Vector( ah, -yi, -zi)
|
|
, Vector( f0, -yi, zc) )
|
|
, faces: vec!( vec!(1, 2, 3)
|
|
, vec!(1, 0, 2)
|
|
, vec!(3, 0, 1)
|
|
, vec!(2, 0, 3) )}
|
|
}
|
|
|
|
pub fn cube(a :T) -> Polyeder<T> {
|
|
let ah :T = a / From::<i32>::from(2);
|
|
|
|
Polyeder{ points: vec!( Vector(-ah, ah, -ah) // 0 => front 1
|
|
, Vector(-ah, -ah, -ah) // 1 => front 2
|
|
, Vector( ah, -ah, -ah) // 2 => front 3
|
|
, Vector( ah, ah, -ah) // 3 => front 4
|
|
, Vector(-ah, ah, ah) // 4 => back 1
|
|
, Vector(-ah, -ah, ah) // 5 => back 2
|
|
, Vector( ah, -ah, ah) // 6 => back 3
|
|
, Vector( ah, ah, ah) ) // 7 => back 4
|
|
, faces: vec!( vec!(0, 1, 2, 3) // front
|
|
, vec!(7, 6, 5, 4) // back
|
|
, vec!(1, 5, 6, 2) // top
|
|
, vec!(0, 3, 7, 4) // bottom
|
|
, vec!(0, 4, 5, 1) // left
|
|
, vec!(2, 6, 7, 3) )} // right
|
|
}
|
|
}
|
|
|
|
impl<T> Primitives<T> for Polyeder<T>
|
|
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
|
|
+ Mul<Output = T> + Div<Output = T>
|
|
+ Copy + Trig + From<i32> + From<i32> {
|
|
fn transform(&self, m :&TMatrix<T>) -> Self {
|
|
Polyeder{ points: self.points.iter().map(|p| m.apply(p)).collect()
|
|
, faces: self.faces.to_vec() }
|
|
}
|
|
|
|
fn project(&self, camera :&Camera<T>) -> Vec<Polygon> {
|
|
fn polygon<I>(c :I) -> Polygon
|
|
where I: Iterator<Item = Coordinate> {
|
|
Polygon(Coordinates(c.collect()))
|
|
}
|
|
|
|
let to_coord = |p :&usize| camera.project(self.points[*p]);
|
|
let to_poly = |f :&Vec<usize>| polygon(f.iter().map(to_coord));
|
|
|
|
self.faces.iter().map(to_poly).collect()
|
|
}
|
|
}
|