// // Stuff for manipulating 3 dimensional vectors. // // Georg Hopp // // Copyright © 2019 Georg Hopp // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // use std::fmt::{Formatter, Display, Result}; use std::ops::{Add, Sub, Neg, Mul, Div}; use crate::trigonometry::Trig; #[derive(Debug, Eq, Clone, Copy)] pub struct Vector(pub T, pub T, pub T) where T: Add + Sub + Neg + Mul + Div + Trig + Copy; impl Vector where T: Add + Sub + Neg + Mul + Div + Trig + Copy { pub fn x(self) -> T { self.0 } pub fn y(self) -> T { self.1 } pub fn z(self) -> T { self.2 } pub fn abs(self) -> T { let Vector(x, y, z) = self; (x * x + y * y + z * z).sqrt().unwrap() } pub fn mul(self, s :&T) -> Self { let Vector(x, y, z) = self; Vector(x * *s, y * *s, z * *s) } pub fn dot(self, other :Self) -> T { let Vector(x1, y1, z1) = self; let Vector(x2, y2, z2) = other; x1 * x2 + y1 * y2 + z1 * z2 } pub fn norm(self) -> Self { // TODO This can result in 0 or inf Vectors… // Maybe we need to handle zero and inf abs here… self.mul(&self.abs()) } pub fn distance(self, other :Self) -> T { (self - other).abs() } } impl Display for Vector where T: Add + Sub + Neg + Mul + Div + Trig + Display + Copy { fn fmt(&self, f :&mut Formatter<'_>) -> Result { let Vector(x, y, z) = self; write!(f, "({}, {}, {})", x, y, z) } } impl PartialEq for Vector where T: Add + Sub + Neg + Mul + Div + Trig + PartialEq + Copy { fn eq(&self, other :&Self) -> bool { let Vector(x1, y1, z1) = self; let Vector(x2, y2, z2) = other; x1 == x2 && y1 == y2 && z1 == z2 } } impl Add for Vector where T: Add + Sub + Neg + Mul + Div + Trig + Copy { type Output = Self; fn add(self, other :Self) -> Self { let Vector(x1, y1, z1) = self; let Vector(x2, y2, z2) = other; Vector(x1 + x2, y1 + y2, z1 + z2) } } impl Sub for Vector where T: Add + Sub + Neg + Mul + Div + Trig + Copy { type Output = Self; fn sub(self, other :Self) -> Self { self + -other } } impl Neg for Vector where T: Add + Sub + Neg + Mul + Div + Trig + Copy { type Output = Self; fn neg(self) -> Self { let Vector(x, y, z) = self; Self(-x, -y, -z) } } impl Mul for Vector where T: Add + Sub + Neg + Mul + Div + Trig + Copy { type Output = Self; fn mul(self, other :Self) -> Self { let Vector(ax, ay, az) = self; let Vector(bx, by, bz) = other; Vector( ay * bz - az * by , az * bx - ax * bz , ax * by - ay * bx ) } }