// // Test our fractional crate / module... // // Georg Hopp // // Copyright © 2019 Georg Hopp // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // use std::convert::{TryFrom, TryInto, Into}; use std::f64::consts::PI as FPI; use std::fmt::Display; use std::num::TryFromIntError; use std::ops::{Add,Sub,Neg,Mul,Div}; use std::sync::mpsc; use std::time; use std::thread; use fractional::continuous::Continuous; use fractional::easel::{ Coordinate, Coordinates, Drawable, Line, Polyline , Polygon, Rectangle}; use fractional::fractional::{Fractional, from_vector}; use fractional::trigonometry::Trig; use fractional::vector::{Vector}; use fractional::transform::{TMatrix, translate, rotate_x, rotate_y, rotate_z, rotate_v}; use fractional::xcb::XcbEasel; use fractional::easel::Canvas; fn mean(v: &Vec) -> Result { let r = v.iter().fold(0, |acc, x| acc + x); let l = i64::try_from(v.len())?; Ok(Fractional(r, l)) } fn common_fractional() { let a = vec![3, 6, 1, 9]; let b = from_vector(&a); let c = mean(&a).unwrap(); // This might fail if the len of the // vector (usize) does not fit into i32. let cr :f64 = c.try_into().unwrap(); println!(" [i32] : {:?}", a); println!(" [Fractional] : {:?}", b); println!(" mean of [i32] : {}" , c); println!(" as f64 : {}" , cr); println!(" again as f64 : {}" , TryInto::::try_into(c).unwrap()); } fn continuous() { let d = Fractional(45, 16); let e = Fractional(16, 45); let dc :Continuous = (&d).into(); let ec :Continuous = (&e).into(); println!("cont frac of d : {} => {:?}", d, dc); println!("cont frac of e : {} => {:?}", e, ec); println!(" reverted dc : {:?} {}", dc, Into::::into(&dc)); println!(" reverted ec : {:?} {}", ec, Into::::into(&ec)); } fn sqrt() { let f = Fractional(-9, 4); let fr :f64 = f.try_into().unwrap(); let sq = f.sqrt(); let _sq = fr.sqrt(); println!("{:>14} : {:?} / {}", format!("sqrt {}", f), sq, _sq); for f in [ Fractional(9, 4) , Fractional(45, 16) , Fractional(16, 45) , Fractional(9, 3) ].iter() { let fr :f64 = (*f).try_into().unwrap(); let sq = f.sqrt().unwrap(); let sqr :f64 = sq.try_into().unwrap(); let _sqr = fr.sqrt(); println!("{:>14} : {} {} / {}", format!("sqrt {}", f), sq, sqr, _sqr); } } fn pi() { let pi = Fractional::pi(); let pir :f64 = pi.try_into().unwrap(); let pit :(i32, i32) = pi.try_into().unwrap(); let pi2r :f64 = (pi * pi).try_into().unwrap(); println!(" Rust π : {}" , FPI); println!(" π : {} {}" , pi, pir); println!(" π as tuple : {:?}" , pit); println!(" Rust π² : {}" , FPI * FPI); println!(" π² : {} {}" , pi * pi, pi2r); } fn _sin() { for d in [ 0, 30, 45, 90, 135, 180, 225, 270, 315 , 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() { let s = Fractional::sin(*d as i32); let sr :f64 = s.try_into().unwrap(); let _s = f64::sin(*d as f64 * FPI / 180.0); println!("{:>14} : {} {} / {}", format!("sin {}", d), s, sr, _s); } } fn _tan() { for d in [ 0, 30, 45, 90, 135, 180, 225, 270, 315 , 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() { let t = Fractional::tan(*d as i32); let tr :f64 = t.try_into().unwrap(); let _t = f64::tan(*d as f64 * FPI / 180.0); println!("{:>14} : {} {} / {}", format!("tan {}", d), t, tr, _t); } } fn _cos() { for d in [ 0, 30, 45, 90, 135, 180, 225, 270, 315 , 9, 17, 31, 73, 89, 123, 213, 312, 876 ].iter() { let c = Fractional::cos(*d as i32); let cr :f64 = c.try_into().unwrap(); let _c = f64::cos(*d as f64 * FPI / 180.0); println!("{:>14} : {} {} / {}", format!("cos {}", d), c, cr, _c); } } fn _vector1() { let v1 = Vector(1.into(), 2.into(), 3.into()); let v2 = Vector(2.into(), 2.into(), 3.into()); let s :Fractional = 3.into(); _vector(v1, v2, s); } fn _vector2() { let v1 = Vector(1.0, 2.0, 3.0); let v2 = Vector(2.0, 2.0, 3.0); let s = 3.0; _vector(v1, v2, s); } fn _vector(v1 :Vector, v2 :Vector, s :T) where T: Add + Sub + Neg + Mul + Div + Trig + Copy + Display { println!("{:>14} : {}", "Vector v1", v1); println!("{:>14} : {}", "Vector v2", v2); println!("{:>14} : {}", "abs v1", v1.abs()); println!("{:>14} : {}", "-v1", -v1); println!("{:>14} : {}", "v1 + v1", v1 + v1); println!("{:>14} : {}", "v1 - v1", v1 - v1); println!("{:>14} : {}", "v2 - v1", v2 - v1); println!("{:>14} : {}", format!("v1 * {}", s), v1.mul(&s)); println!("{:>14} : {}", "norm v1", v1.norm()); println!("{:>14} : {}", "abs norm v1", v1.norm().abs()); println!("{:>14} : {}", "abs v1", v1.abs()); println!("{:>14} : {}", "norm * abs", v1.norm().mul(&v1.abs())); println!("{:>14} : {}", "distance v1 v2", v1.distance(v2)); println!("{:>14} : {}", "distance v2 v1", v2.distance(v1)); println!("{:>14} : {}", "v1 dot v2", v1.dot(v2)); println!("{:>14} : {}", "v2 dot v1", v2.dot(v1)); println!("{:>14} : {}", "v1 * v2", v1 * v2); println!("{:>14} : {}", "v2 * v1", v2 * v1); } fn _transform1() { let v = Vector(Fractional(1,1), Fractional(1,1), Fractional(1,1)); let v1 = Vector(Fractional(1,1), Fractional(2,1), Fractional(3,1)); let v2 = Vector(Fractional(1,1), Fractional(1,1), Fractional(0,1)); let v3 = Vector(Fractional(1,1), Fractional(0,1), Fractional(1,1)); _transform(v, v1, v2, v3); } fn _transform2() { let v = Vector(1.0, 1.0, 1.0); let v1 = Vector(1.0, 2.0, 3.0); let v2 = Vector(1.0, 1.0, 0.0); let v3 = Vector(1.0, 0.0, 1.0); _transform(v, v1, v2, v3); } fn _transform(v :Vector, v1 :Vector, v2 :Vector, v3 :Vector) where T: Add + Sub + Neg + Mul + Div + Trig + From + Copy + Display { println!("{:>14} : {}", "Vector v1", v1); println!("{:>14} : {}", "translate v1", translate(v).apply(&v1)); println!(); fn _rot( o :&str , n :&str , v :&Vector , fs :&[&dyn Fn(i32) -> TMatrix] ) where T: Add + Sub + Neg + Mul + Div + Trig + From + Copy + Display { for d in [ 30, 45, 60, 90, 120, 135, 150, 180 , 210, 225, 240, 270, 300, 315, 330 ].iter() { let mi = fs.iter().map(|f| f(*d as i32)); println!( "{:>14} : {}" , format!("{} {} {}", o, d, n) , TMatrix::combine(mi).apply(v) ); } } println!("{:>14} : {}", "Vector v2", v2); _rot("rot_x", "v2", &v2, &[&rotate_x]); println!(); _rot("rot_y", "v2", &v2, &[&rotate_y]); println!(); _rot("rot_xy", "v2", &v2, &[&rotate_x, &rotate_y]); println!(); println!("{:>14} : {}", "Vector v3", v3); _rot("rot_z", "v3", &v3, &[&rotate_z]); println!(); for d in [ 30, 45, 60, 90, 120, 135, 150, 180 , 210, 225, 240, 270, 300, 315, 330 ].iter() { println!( "{:>14} : {}" , format!("rot_v {} v2", d) , rotate_v(&v, *d as i32).apply(&v2)); } } fn _line() { let a = (Coordinate(0, 1), Coordinate(6, 4)); let b = (Coordinate(0, 4), Coordinate(6, 1)); let c = (Coordinate(1, 0), Coordinate(6, 8)); let d = (Coordinate(1, 8), Coordinate(6, 0)); for i in [a, b, c, d].iter() { println!("{:>14} : {}", Line(i.0, i.1), Line(i.0, i.1).plot()); println!("{:>14} : {}", Line(i.1, i.0), Line(i.1, i.0).plot()); } println!(); let r = Rectangle(Coordinate(1, 1), Coordinate(10, 5)); println!("{:>14} : {}", r, r.plot()); println!(); let pl = Polyline( Coordinates(vec!(a.0, a.1, b.0, b.1, c.0, c.1, d.0, d.1))); println!("{:>14} : {}", pl, pl.plot()); println!(); let pg = Polygon( Coordinates(vec!( Coordinate( 0, -10) , Coordinate( 10, 10) , Coordinate(-10, 10) ))); println!("{:>14} : {}", pg, pg.plot()); let i = Vector(Fractional( 0,1), Fractional(-30,1), Fractional(0,1)); let j = Vector(Fractional( 30,1), Fractional( 30,1), Fractional(0,1)); let k = Vector(Fractional(-30,1), Fractional( 30,1), Fractional(0,1)); let rot :TMatrix = rotate_z(20); let Vector(ix, iy, _) = rot.apply(&i); let Vector(jx, jy, _) = rot.apply(&j); let Vector(kx, ky, _) = rot.apply(&k); fn to_i32(x :Fractional) -> i32 { let Fractional(n, d) = x; (n / d + if (n % d).abs() < (n / 2).abs() { 0 } else { 1 }) as i32 } println!(); let pg = Polygon( Coordinates(vec!( Coordinate(to_i32(ix) + 100, to_i32(iy) + 100) , Coordinate(to_i32(jx) + 100, to_i32(jy) + 100) , Coordinate(to_i32(kx) + 100, to_i32(ky) + 100) ))); println!("{:>14} : {}", pg, pg.plot()); let i = Vector( 0.0, -30.0, 0.0); let j = Vector( 30.0, 30.0, 0.0); let k = Vector(-30.0, 30.0, 0.0); let rot :TMatrix = rotate_z(20); let Vector(ix, iy, _) = rot.apply(&i); let Vector(jx, jy, _) = rot.apply(&j); let Vector(kx, ky, _) = rot.apply(&k); fn to_i32_2(x :f64) -> i32 { x.round() as i32 } println!(); let pg = Polygon( Coordinates(vec!( Coordinate(to_i32_2(ix) + 100, to_i32_2(iy) + 100) , Coordinate(to_i32_2(jx) + 100, to_i32_2(jy) + 100) , Coordinate(to_i32_2(kx) + 100, to_i32_2(ky) + 100) ))); println!("{:>14} : {}", pg, pg.plot()); } fn main() { common_fractional(); println!(); continuous(); println!(); sqrt(); println!(); pi(); println!(); _sin(); println!(); _cos(); println!(); _tan(); println!(); _vector1(); println!(); _vector2(); println!(); _transform1(); println!(); _transform2(); println!(); _line(); let xcb = XcbEasel::new().unwrap(); let mut canvas = xcb.canvas(151, 151).unwrap(); canvas.set_title("Something..."); canvas.init_events(); let (tx, rx) = mpsc::channel(); let i = Vector(Fractional( 0,1), Fractional(-35,1), Fractional(0,1)); let j = Vector(Fractional( 30,1), Fractional( 17,1), Fractional(0,1)); let k = Vector(Fractional(-30,1), Fractional( 17,1), Fractional(0,1)); fn to_i32(x :Fractional) -> i32 { let Fractional(n, d) = x; (n / d + if (n % d).abs() < (n / 2).abs() { 0 } else { 1 }) as i32 } canvas.start_events(tx); thread::spawn(move || { let mut deg :i32 = 0; loop { let rot :TMatrix = rotate_z(deg) * rotate_x(-deg); let Vector(ix, iy, _) = rot.apply(&i); let Vector(jx, jy, _) = rot.apply(&j); let Vector(kx, ky, _) = rot.apply(&k); let pg = Polygon( Coordinates(vec!( Coordinate(to_i32(ix), to_i32(iy)) , Coordinate(to_i32(jx), to_i32(jy)) , Coordinate(to_i32(kx), to_i32(ky)) ))); canvas.clear(); canvas.draw(&pg, Coordinate(75,75)); canvas.show(); deg = (deg + 1) % 360; thread::sleep(time::Duration::from_millis(5)); } }); for x in rx { match x { 1 => break, _ => {}, } } }