// // Test our fractional crate / module... // // Georg Hopp // // Copyright © 2019 Georg Hopp // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // use std::convert::{TryFrom, TryInto, Into}; use std::num::TryFromIntError; use std::f64::consts::PI as FPI; use fractional::fractional::{Fractional, from_vector, Continuous}; use fractional::trigonometry::{sin, cos, PI}; struct Vector { x: Fractional, y: Fractional, z: Fractional, } fn mean(v: &Vec) -> Result { let r = v.iter().fold(0, |acc, x| acc + x); let l = i64::try_from(v.len())?; Ok(Fractional(r, l)) } fn common_fractional() { let a = vec![3, 6, 1, 9]; let b = from_vector(&a); let c = mean(&a).unwrap(); // This might fail if the len of the // vector (usize) does not fit into i32. let cr :f64 = c.try_into().unwrap(); println!(" [i32] : {:?}", a); println!(" [Fractional] : {:?}", b); println!(" mean of [i32] : {}" , c); println!(" as f64 : {}" , cr); println!(" again as f64 : {}" , TryInto::::try_into(c).unwrap()); } fn continuous() { let d = Fractional(45, 16); let e = Fractional(16, 45); let dc :Continuous = d.into(); let ec :Continuous = e.into(); println!("cont frac of d : {} => {:?}", d, dc); println!("cont frac of e : {} => {:?}", e, ec); println!(" reverted dc : {:?} {}", dc, Into::::into(&dc)); println!(" reverted ec : {:?} {}", ec, Into::::into(&ec)); } fn sqrt() { let f = Fractional(-9, 4); let fr :f64 = f.try_into().unwrap(); let sq = f.sqrt(); let _sq = f64::sqrt(fr); println!("{:>14} : {:?} / {}", format!("sqrt {}", f), sq, _sq); for f in [ Fractional(9, 4) , Fractional(45, 16) , Fractional(16, 45) , Fractional(9, 3) ].iter() { let fr :f64 = (*f).try_into().unwrap(); let sq = f.sqrt().unwrap(); let sqr :f64 = sq.try_into().unwrap(); let _sqr = f64::sqrt(fr); println!("{:>14} : {} {} / {}", format!("sqrt {}", f), sq, sqr, _sqr); } } fn pi() { let pir :f64 = PI.try_into().unwrap(); let pit :(i32, i32) = PI.try_into().unwrap(); let pi2r :f64 = (PI * PI).try_into().unwrap(); println!(" Rust π : {}" , FPI); println!(" π : {} {}" , PI, pir); println!(" π as tuple : {:?}" , pit); println!(" Rust π² : {}" , FPI * FPI); println!(" π² : {} {}" , PI * PI, pi2r); } fn _sin() { for d in [9, 17, 31, 45, 73, 123, 213, 312, 876].iter() { let s = sin(*d as i32); let sr :f64 = s.try_into().unwrap(); let _s = f64::sin(*d as f64 * FPI / 180.0); println!("{:>14} : {} {} / {}", format!("sin {}", d), s, sr, _s); } } fn _cos() { for d in [9, 17, 31, 45, 73, 123, 213, 312, 876].iter() { let s = cos(*d as i32); let sr :f64 = s.try_into().unwrap(); let _s = f64::cos(*d as f64 * FPI / 180.0); println!("{:>14} : {} {} / {}", format!("cos {}", d), s, sr, _s); } } fn main() { common_fractional(); println!(); continuous(); println!(); sqrt(); println!(); pi(); println!(); _sin(); println!(); _cos(); }