3 changed files with 152 additions and 9 deletions
@ -0,0 +1,107 @@ |
|||
//
|
|||
// Stuff for manipulating 3 dimensional vectors.
|
|||
//
|
|||
// Georg Hopp <georg@steffers.org>
|
|||
//
|
|||
// Copyright © 2019 Georg Hopp
|
|||
//
|
|||
// This program is free software: you can redistribute it and/or modify
|
|||
// it under the terms of the GNU General Public License as published by
|
|||
// the Free Software Foundation, either version 3 of the License, or
|
|||
// (at your option) any later version.
|
|||
//
|
|||
// This program is distributed in the hope that it will be useful,
|
|||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
// GNU General Public License for more details.
|
|||
//
|
|||
// You should have received a copy of the GNU General Public License
|
|||
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|||
//
|
|||
use std::ops::{Add, Sub, Neg, Mul};
|
|||
use crate::{Fractional};
|
|||
|
|||
#[derive(Debug, Eq, Clone, Copy)]
|
|||
pub struct Vector(pub Fractional, pub Fractional, pub Fractional);
|
|||
|
|||
impl Vector {
|
|||
pub fn x(self) -> Fractional { self.0 }
|
|||
pub fn y(self) -> Fractional { self.1 }
|
|||
pub fn z(self) -> Fractional { self.2 }
|
|||
|
|||
pub fn abs(self) -> Fractional {
|
|||
let Vector(x, y, z) = self;
|
|||
(x * x + y * y + z * z).sqrt().unwrap()
|
|||
}
|
|||
|
|||
pub fn mul(self, s :&Fractional) -> Self {
|
|||
let Vector(x, y, z) = self;
|
|||
Vector(x * *s, y * *s, z * *s)
|
|||
}
|
|||
|
|||
pub fn dot(self, other :Self) -> Fractional {
|
|||
let Vector(x1, y1, z1) = self;
|
|||
let Vector(x2, y2, z2) = other;
|
|||
|
|||
x1 * x2 + y1 * y2 + z1 * z2
|
|||
}
|
|||
|
|||
pub fn norm(self) -> Self {
|
|||
let Fractional(n, d) = self.abs();
|
|||
// TODO This can result in 0 or inf Vectors…
|
|||
// Maybe we need to handle zero and inf abs here…
|
|||
self.mul(&Fractional(d, n))
|
|||
}
|
|||
|
|||
pub fn distance(self, other :Self) -> Fractional {
|
|||
(self - other).abs()
|
|||
}
|
|||
}
|
|||
|
|||
impl PartialEq for Vector {
|
|||
fn eq(&self, other :&Self) -> bool {
|
|||
let Vector(x1, y1, z1) = self;
|
|||
let Vector(x2, y2, z2) = other;
|
|||
x1 == x2 && y1 == y2 && z1 == z2
|
|||
}
|
|||
}
|
|||
|
|||
impl Add for Vector {
|
|||
type Output = Self;
|
|||
|
|||
fn add(self, other :Self) -> Self {
|
|||
let Vector(x1, y1, z1) = self;
|
|||
let Vector(x2, y2, z2) = other;
|
|||
Vector(x1 + x2, y1 + y2, z1 + z2)
|
|||
}
|
|||
}
|
|||
|
|||
impl Sub for Vector {
|
|||
type Output = Self;
|
|||
|
|||
fn sub(self, other :Self) -> Self {
|
|||
self + -other
|
|||
}
|
|||
}
|
|||
|
|||
impl Neg for Vector {
|
|||
type Output = Self;
|
|||
|
|||
fn neg(self) -> Self {
|
|||
let Vector(x, y, z) = self;
|
|||
Self(-x, -y, -z)
|
|||
}
|
|||
}
|
|||
|
|||
impl Mul for Vector {
|
|||
type Output = Self;
|
|||
|
|||
fn mul(self, other :Self) -> Self {
|
|||
let Vector(ax, ay, az) = self;
|
|||
let Vector(bx, by, bz) = other;
|
|||
|
|||
Vector( ay * bz - az * by
|
|||
, az * bx - ax * bz
|
|||
, ax * by - ay * bx )
|
|||
}
|
|||
}
|
|||
Write
Preview
Loading…
Cancel
Save
Reference in new issue