A demo application using easel3d to draw in an X-Window.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

167 lines
6.2 KiB

//
// Basic geometric things...
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::convert::From;
use std::ops::{Add,Sub,Neg,Mul,Div};
use std::fmt::Debug;
use crate::easel::{Canvas,Coordinate,Coordinates,Polygon};
use crate::transform::TMatrix;
use crate::trigonometry::Trig;
use crate::vector::Vector;
#[derive(Debug)]
pub struct Polyeder<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig {
points :Vec<Vector<T>>,
faces :Vec<Vec<usize>>,
normals :Vec<Vector<T>>,
}
pub trait Primitives<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig + From<i32> {
fn transform(&self, m :&TMatrix<T>) -> Self;
fn project(&self, camera :&Camera<T>) -> Vec<Polygon>;
}
pub struct Camera<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig + From<i32> {
width :T,
height :T,
project :TMatrix<T>,
}
impl<T> Camera<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Debug + Copy + Trig + From<i32> {
// This code assumes that the size of the viewport is always
// equal to the size of the physical screen… e.g. window/canvas thus some
// effects can't be done. See book for examples with different viewport
// and screen sizes.
pub fn new(c :&dyn Canvas, angle :i32) -> Self {
let width :T = (c.width() as i32).into();
let height :T = (c.height() as i32).into();
let d :T = 1.into();
let fov = T::cot(angle) * width;
let wh = width / 2.into();
let hh = height / 2.into();
Camera { width: width
, height: height
, project: TMatrix::new(
( fov, 0.into(), wh, 0.into())
, (0.into(), fov, hh, 0.into())
, (0.into(), 0.into(), d, 1.into())
, (0.into(), 0.into(), 1.into(), 0.into()) ) }
}
pub fn get_projection(&self) -> TMatrix<T> {
self.project
}
pub fn project(&self, v :Vector<T>) -> Coordinate {
let p = self.project.apply(&v);
Coordinate(T::round(&p.x()), T::round(&p.y()))
}
}
impl<T> Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Debug + Copy + Trig + From<i32> {
// https://rechneronline.de/pi/tetrahedron.php
pub fn tetrahedron(a :T) -> Polyeder<T> {
let f0 :T = 0.into();
let f3 :T = 3.into();
let f4 :T = 4.into();
let f6 :T = 6.into();
let f12 :T = 12.into();
let yi :T = a / f12 * T::sqrt(f6).unwrap();
let yc :T = a / f4 * T::sqrt(f6).unwrap();
let zi :T = T::sqrt(f3).unwrap() / f6 * a;
let zc :T = T::sqrt(f3).unwrap() / f3 * a;
let ah :T = a / 2.into();
// half the height in y
let _yh :T = a / f6 * T::sqrt(f6).unwrap();
// half the deeps in z
let _zh :T = T::sqrt(f3).unwrap() / f4 * a;
Polyeder{ points: vec!( Vector( f0, yc, f0)
, Vector(-ah, -yi, -zi)
, Vector( ah, -yi, -zi)
, Vector( f0, -yi, zc) )
, faces: vec!( vec!(1, 2, 3)
, vec!(1, 0, 2)
, vec!(3, 0, 1)
, vec!(2, 0, 3) )}
}
pub fn cube(a :T) -> Polyeder<T> {
let ah :T = a / From::<i32>::from(2);
Polyeder{ points: vec!( Vector(-ah, ah, -ah) // 0 => front 1
, Vector(-ah, -ah, -ah) // 1 => front 2
, Vector( ah, -ah, -ah) // 2 => front 3
, Vector( ah, ah, -ah) // 3 => front 4
, Vector(-ah, ah, ah) // 4 => back 1
, Vector(-ah, -ah, ah) // 5 => back 2
, Vector( ah, -ah, ah) // 6 => back 3
, Vector( ah, ah, ah) ) // 7 => back 4
, faces: vec!( vec!(0, 1, 2, 3) // front
, vec!(7, 6, 5, 4) // back
, vec!(1, 5, 6, 2) // top
, vec!(0, 3, 7, 4) // bottom
, vec!(0, 4, 5, 1) // left
, vec!(2, 6, 7, 3) )} // right
}
}
impl<T> Primitives<T> for Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Debug + Copy + Trig + From<i32> + From<i32> {
fn transform(&self, m :&TMatrix<T>) -> Self {
Polyeder{ points: self.points.iter().map(|p| m.apply(p)).collect()
, faces: self.faces.to_vec() }
}
// TODO for now we assume already prejected vertices (points)
// in future we need to distinguish more clear between vertex and point
// and projected_point.
fn project(&self, _camera :&Camera<T>) -> Vec<Polygon> {
fn polygon<I>(c :I) -> Polygon
where I: Iterator<Item = Coordinate> {
Polygon(Coordinates(c.collect()))
}
// this one does the projection... as the projection was the last
// matrix we do not need to do it here.
// let to_coord = |p :&usize| _camera.project(self.points[*p]);
let to_coord = |p :&usize| {
let v = self.points[*p];
Coordinate(v.x().round(), v.y().round()) };
let to_poly = |f :&Vec<usize>| polygon(f.iter().map(to_coord));
self.faces.iter().map(to_poly).collect()
}
}