A demo application using easel3d to draw in an HTML5 canvas element in a web page.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

376 lines
12 KiB

//
// Basic geometric things...
//
// Georg Hopp <georg@steffers.org>
//
// Copyright © 2019 Georg Hopp
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
use std::convert::{From, Into};
use std::ops::{Add,Sub,Neg,Mul,Div};
use std::fmt::Debug;
use crate::easel::{Canvas, Coordinate, Coordinates, Polygon};
use crate::transform::{TMatrix, Transformable};
use crate::trigonometry::Trig;
use crate::vector::Vector;
#[derive(Debug, Clone)]
pub struct Face<T>
where T: Add + Sub + Neg + Mul + Div + Copy + Trig {
corners :Vec<usize>,
normal :Option<Vector<T>>,
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub struct Point<T>(pub Vector<T>, T)
where T: Add + Sub + Neg + Mul + Div + PartialEq + Copy + Trig;
impl<T> Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy + From<i32> {
pub fn new(x :T, y :T, z :T) -> Self {
Self(Vector(x, y, z), 1.into())
}
}
impl<T> Add for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy {
type Output = Self;
fn add(self, other :Self) -> Self {
let Point(v1, w1) = self;
let Point(v2, w2) = other;
Self(v1 + v2, w1 + w2)
}
}
impl<T> Neg for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy {
type Output = Self;
fn neg(self) -> Self {
let Point(v, w) = self;
Self(-v, -w)
}
}
impl<T> Sub for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy {
type Output = Self;
fn sub(self, other :Self) -> Self {
self + -other
}
}
impl<T> Mul for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy + From<i32> {
type Output = Self;
fn mul(self, other :Self) -> Self {
let a :Vector<T> = self.into();
let b :Vector<T> = other.into();
Point(a * b, 1.into())
}
}
impl<T> From<Vector<T>> for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy + From<i32> {
fn from(v :Vector<T>) -> Self {
Point(v, 1.into())
}
}
impl<T> Into<Vector<T>> for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Trig + Copy + From<i32> {
fn into(self) -> Vector<T> {
let Point(v, w) = self;
if w == 0.into() {
v
} else {
v.mul(&w.recip())
}
}
}
impl<T> Transformable<T> for Point<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Debug + Trig + Copy + From<i32> {
fn transform(&self, m :&TMatrix<T>) -> Self {
let Point(v, w) = *self;
let (v, w) = m.apply(&v, w);
if w == 0.into() {
v.into()
} else {
v.mul(&w.recip()).into()
}
}
}
#[derive(Debug)]
pub struct Polyeder<T>
where T: Add + Sub + Neg + Mul + Div + PartialEq + Copy + Trig {
points :Vec<Point<T>>,
faces :Vec<Face<T>>,
}
pub trait Primitives<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig + From<i32> {
fn transform(&self, m :&TMatrix<T>) -> Self;
fn project( &self
, camera :&Camera<T>
, light :&DirectLight<T>
, col :u32 ) -> Vec<(Polygon<T>, u32)>;
}
pub struct Camera<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig + From<i32> {
width :T,
height :T,
distance :T,
project :TMatrix<T>,
}
pub struct DirectLight<T>
where T: Add + Sub + Neg + Mul + Div + Debug + Copy + Trig + From<i32> {
direction: Vector<T>,
}
impl<T> Camera<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Debug + Copy + Trig + From<i32> {
// This code assumes that the size of the viewport is always
// equal to the size of the physical screen… e.g. window/canvas thus some
// effects can't be done. See book for examples with different viewport
// and screen sizes.
pub fn new(c :&dyn Canvas<T>, angle :i32) -> Self {
let width :T = (c.width() as i32).into();
let height :T = (c.height() as i32).into();
let d :T = 1.into();
let fov = T::cot(angle) * width;
let wh = width / 2.into();
let hh = height / 2.into();
Camera { width: width
, height: height
, distance: d
, project: TMatrix::new(
( fov, 0.into(), wh, 0.into())
, (0.into(), fov, hh, 0.into())
, (0.into(), 0.into(), d, 1.into())
, (0.into(), 0.into(), 1.into(), 0.into()) ) }
}
pub fn get_distance(&self) -> T {
self.distance
}
pub fn get_projection(&self) -> TMatrix<T> {
self.project
}
pub fn project(&self, p :Point<T>) -> Point<T> {
p.transform(&self.project)
}
}
impl<T> DirectLight<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Debug + Copy + Trig + From<i32> {
pub fn new(v :Vector<T>) -> Self {
DirectLight{ direction: v }
}
pub fn dir(&self) -> Vector<T> {
self.direction
}
}
impl<T> Face<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Debug + Copy + Trig + From<i32> {
fn new(corners :Vec<usize>, ps :&[Point<T>]) -> Self {
let mut f = Face{ corners: corners, normal: None };
f.update_normal(ps);
f
}
fn update_normal(&mut self, ps :&[Point<T>]) {
let edge10 :Vector<T> = (ps[self.corners[1]] - ps[self.corners[0]]).into();
let edge12 :Vector<T> = (ps[self.corners[1]] - ps[self.corners[2]]).into();
self.normal = Some(edge10 * edge12);
}
}
impl<T> Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ PartialEq + Debug + Copy + Trig + From<i32> {
fn update_normals(&mut self) {
for f in self.faces.iter_mut() {
f.update_normal(&self.points);
}
}
// construct via cube, see polyhedra.pdf
pub fn tetrahedron(a :T) -> Polyeder<T> {
let f2 :T = 2.into();
let ch = a / (f2 * T::sqrt(f2).unwrap());
let ps = vec!( Point::new(-ch, -ch, ch) // A
, Point::new(-ch, ch, -ch) // C
, Point::new( ch, -ch, -ch) // E
, Point::new( ch, ch, ch) ); // G
// bottom: 1, 2, 3
let fs = vec!( Face::new(vec!(2, 1, 0), &ps) // bottom
, Face::new(vec!(3, 2, 0), &ps)
, Face::new(vec!(0, 1, 3), &ps)
, Face::new(vec!(1, 2, 3), &ps) );
//let fs = vec!( Face::new(vec!(0, 1, 2), &ps) // bottom
// , Face::new(vec!(0, 2, 3), &ps)
// , Face::new(vec!(3, 1, 0), &ps)
// , Face::new(vec!(3, 2, 1), &ps) );
Polyeder{ points: ps, faces: fs }
}
pub fn triangle(a :T) -> Polyeder<T> {
let f0 :T = 0.into();
let f3 :T = 3.into();
let f6 :T = 6.into();
let zi :T = T::sqrt(f3).unwrap() / f6 * a;
let zc :T = T::sqrt(f3).unwrap() / f3 * a;
let ah :T = a / 2.into();
let ps = vec!( Point::new(-ah, f0, -zi)
, Point::new( f0, f0, zc)
, Point::new( ah, f0, -zi) );
let fs = vec!(Face::new(vec!(0, 1, 2), &ps));
Polyeder{ points: ps, faces: fs }
}
pub fn cube(a :T) -> Polyeder<T> {
let ah :T = a / From::<i32>::from(2);
let ps = vec!( Point::new(-ah, ah, -ah) // 0 => front 1
, Point::new(-ah, -ah, -ah) // 1 => front 2
, Point::new( ah, -ah, -ah) // 2 => front 3
, Point::new( ah, ah, -ah) // 3 => front 4
, Point::new(-ah, ah, ah) // 4 => back 1
, Point::new(-ah, -ah, ah) // 5 => back 2
, Point::new( ah, -ah, ah) // 6 => back 3
, Point::new( ah, ah, ah) ); // 7 => back 4
let fs = vec!( Face::new(vec!(0, 1, 2, 3), &ps) // front
, Face::new(vec!(7, 6, 5, 4), &ps) // back
, Face::new(vec!(1, 5, 6, 2), &ps) // top
, Face::new(vec!(0, 3, 7, 4), &ps) // bottom
, Face::new(vec!(0, 4, 5, 1), &ps) // left
, Face::new(vec!(2, 6, 7, 3), &ps) ); // right
Polyeder{ points: ps, faces: fs }
}
}
impl<T> Primitives<T> for Polyeder<T>
where T: Add<Output = T> + Sub<Output = T> + Neg<Output = T>
+ Mul<Output = T> + Div<Output = T>
+ Debug + Copy + Trig + From<i32> + PartialOrd {
// TODO Maybe this should also be an instance of Transformable…
fn transform(&self, m :&TMatrix<T>) -> Self {
let Polyeder{ points: ps, faces: fs } = self;
let mut p = Polyeder{
points: ps.iter().map(|p| p.transform(m)).collect()
, faces: fs.to_vec()
};
// TODO alternatively we could rotate the normals too, but this cannot
// done with the original matrix… the question is, what is faster.
p.update_normals();
p
}
fn project( &self
, camera :&Camera<T>
, light :&DirectLight<T>
, color :u32 ) -> Vec<(Polygon<T>, u32)> {
// Helper to create a Polygon from Coordinates…
// TODO probably there needs to be a Polygon constructor for this.
fn polygon<I, T>(c :I) -> Polygon<T>
where I: Iterator<Item = Coordinate<T>> {
Polygon(Coordinates(c.collect()))
}
// this one does the projection... as the projection was the last
// matrix we do not need to do it here.
let to_coord = |p :&usize| {
let Point(v, _) = camera.project(self.points[*p]);
Coordinate(T::round(&v.x()), T::round(&v.y()), v.z() - 1.into())
};
let to_poly = |f :&Face<T>| {
let pg = polygon(f.corners.iter().map(to_coord));
let mut r :T = (((color >> 16) & 0xFF) as i32).into();
let mut g :T = (((color >> 8) & 0xFF) as i32).into();
let mut b :T = (((color ) & 0xFF) as i32).into();
let lf :T = match f.normal {
None => 1.into(),
Some(n) => n.dot(light.dir())
/ (n.mag() * light.dir().mag()),
};
// this "if" represents a first simple backface culling
// approach. We only return face that face towards us.
if lf < 0.into() {
r = r * -lf;
g = g * -lf;
b = b * -lf;
let c :u32 = (r.round() as u32) << 16
| (g.round() as u32) << 8
| (b.round() as u32);
Some((pg, c))
} else {
None
}};
self.faces.iter().filter_map(to_poly).collect()
}
}