|
|
@ -39,20 +39,55 @@ impl Continuous { |
|
|
v[0] = an;
|
|
|
v[0] = an;
|
|
|
// The convergence criteria „an_1 == 2 * a0“ is not good for
|
|
|
// The convergence criteria „an_1 == 2 * a0“ is not good for
|
|
|
// very small x thus I decided to break the iteration at constant
|
|
|
// very small x thus I decided to break the iteration at constant
|
|
|
// time. Which is the 10 below.
|
|
|
|
|
|
|
|
|
// time. Which is the 5 below.
|
|
|
if v.len() > 1 {
|
|
|
if v.len() > 1 {
|
|
|
inner(&mut v[1..], x, a0, mn_1, dn_1, an_1);
|
|
|
inner(&mut v[1..], x, a0, mn_1, dn_1, an_1);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
|
let mut v :Vec<i64> = vec!(0; 10);
|
|
|
|
|
|
|
|
|
let mut v :Vec<i64> = vec!(0; 5);
|
|
|
inner(&mut v, x, a0, 0, 1, a0);
|
|
|
inner(&mut v, x, a0, 0, 1, a0);
|
|
|
Continuous(v)
|
|
|
Continuous(v)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
|
pub fn into_prec(&self, prec :usize) -> Fractional {
|
|
|
|
|
|
|
|
|
// general continous fraction form of a fractional...
|
|
|
|
|
|
pub fn from_prec(f :&Fractional, prec :Option<usize>) -> Self {
|
|
|
|
|
|
fn inner(v :&mut Vec<i64>, f :Fractional, prec :Option<usize>) {
|
|
|
|
|
|
let mut process = |prec :Option<usize>| {
|
|
|
|
|
|
let Fractional(n, d) = f;
|
|
|
|
|
|
let a = n / d;
|
|
|
|
|
|
let Fractional(_n, _d) = f.noreduce_sub(a.into());
|
|
|
|
|
|
|
|
|
|
|
|
v.push(a);
|
|
|
|
|
|
match _n {
|
|
|
|
|
|
1 => v.push(_d),
|
|
|
|
|
|
0 => {},
|
|
|
|
|
|
_ => inner(v, Fractional(_d, _n), prec),
|
|
|
|
|
|
}
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
match prec {
|
|
|
|
|
|
Some(0) => {},
|
|
|
|
|
|
None => process(None),
|
|
|
|
|
|
Some(p) => process(Some(p - 1)),
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
let mut v = match prec {
|
|
|
|
|
|
None => Vec::with_capacity(100),
|
|
|
|
|
|
Some(p) => Vec::with_capacity(p + 1),
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
inner(&mut v, *f, prec);
|
|
|
|
|
|
Continuous(v)
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
pub fn into_prec(&self, prec :Option<usize>) -> Fractional {
|
|
|
let Continuous(c) = self;
|
|
|
let Continuous(c) = self;
|
|
|
let p = if prec <= c.len() { prec } else { c.len() };
|
|
|
|
|
|
|
|
|
let p = match prec {
|
|
|
|
|
|
Some(p) => if p <= c.len() { p } else { c.len() },
|
|
|
|
|
|
None => c.len(),
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
let to_frac = |acc :Fractional, x :&i64| {
|
|
|
let to_frac = |acc :Fractional, x :&i64| {
|
|
|
let Fractional(an, ad) = acc.noreduce_add((*x).into());
|
|
|
let Fractional(an, ad) = acc.noreduce_add((*x).into());
|
|
|
@ -68,33 +103,13 @@ impl Continuous { |
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
|
impl From<&Fractional> for Continuous {
|
|
|
impl From<&Fractional> for Continuous {
|
|
|
// general continous fraction form of a fractional...
|
|
|
|
|
|
fn from(x :&Fractional) -> Self {
|
|
|
fn from(x :&Fractional) -> Self {
|
|
|
fn inner(mut v :Vec<i64>, f :Fractional) -> Vec<i64> {
|
|
|
|
|
|
let Fractional(n, d) = f;
|
|
|
|
|
|
let a = n / d;
|
|
|
|
|
|
let Fractional(_n, _d) = f.noreduce_sub(a.into());
|
|
|
|
|
|
|
|
|
|
|
|
v.push(a);
|
|
|
|
|
|
match _n {
|
|
|
|
|
|
1 => { v.push(_d); v },
|
|
|
|
|
|
0 => v,
|
|
|
|
|
|
_ => inner(v, Fractional(_d, _n)),
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Continuous(inner(Vec::new(), *x))
|
|
|
|
|
|
|
|
|
Self::from_prec(x, None)
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
|
|
|
impl Into<Fractional> for &Continuous {
|
|
|
impl Into<Fractional> for &Continuous {
|
|
|
fn into(self) -> Fractional {
|
|
|
fn into(self) -> Fractional {
|
|
|
let Continuous(c) = self;
|
|
|
|
|
|
let Fractional(n, d) = c.iter().rev().fold( Fractional(0, 1)
|
|
|
|
|
|
, |acc, x| {
|
|
|
|
|
|
let Fractional(an, ad) = acc + (*x).into();
|
|
|
|
|
|
Fractional(ad, an)
|
|
|
|
|
|
});
|
|
|
|
|
|
Fractional(d, n)
|
|
|
|
|
|
|
|
|
(&self).into_prec(None)
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|